Loading…
Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants
Background/Objectives Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170 MC4R variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts...
Saved in:
Published in: | International Journal of Obesity 2021, Vol.45 (1), p.155-169 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453 |
---|---|
cites | cdi_FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453 |
container_end_page | 169 |
container_issue | 1 |
container_start_page | 155 |
container_title | International Journal of Obesity |
container_volume | 45 |
creator | Namjou, Bahram Stanaway, Ian B. Lingren, Todd Mentch, Frank D. Benoit, Barbara Dikilitas, Ozan Niu, Xinnan Shang, Ning Shoemaker, Ashley H. Carey, David J. Mirshahi, Tooraj Singh, Rajbir Nestor, Jordan G. Hakonarson, Hakon Denny, Joshua C. Crosslin, David R. Jarvik, Gail P. Kullo, Iftikhar J. Williams, Marc S. Harley, John B. |
description | Background/Objectives
Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170
MC4R
variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of
MC4R
variants in large cohort of different ancestries, we evaluated the
MC4R
coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus.
Subjects/Methods
The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping.
Results
Targeted sequencing data of
MC4R
revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m
2
. In GWAS analysis, in addition to known risk haplotype upstream of
MC4R
(best variant rs6567160 (
P
= 5.36 × 10
−25
, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (
P
= 6.23 × 10
−08
, Beta = −0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI.
Conclusions
MC4R
screening in a large eMERGE cohort confirmed many previous findings, extend the
MC4R
pleotropic effects, and discovered additional
MC4R
rare alleles that probably contribute to obesity. |
doi_str_mv | 10.1038/s41366-020-00675-4 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7752751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649644632</galeid><sourcerecordid>A649644632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhgdR7Fr9A15IQBBvpmbyOXMjlGWtQotQ9DpkMic7qTPJmsys7L83261tV0RyEXLOc97knLxF8brCZxWm9YfEKipEiQkuMRaSl-xJsaiYFCVnjXxaLDDFssRc8JPiRUo3GGPOMXlenFDScFJxsij61VYPs55c8ChYNPWArpbsGq3BA9ImhpQQXK2uL1bIw_QrxB_IdeAnZx0kNGq_Q7OPsAlxgg6FFpKbdqVOKRin96Gtjk77Kb0snlk9JHh1t58W3z-tvi0_l5dfL74szy9Lw2rJysZykA3ImhshOtqatuONbXVnoatpR_KxZqaqmLUgWmMFNDUBAx3jutGM09Pi40F3M7cjdCa_NepBbaIbddypoJ06znjXq3XYKik5kbzKAu_vBGL4OUOa1OiSgWHQHsKcFGGMCcwoxRl9-xd6E-boc3uZkpQw3kj6QK31AMp5G_K9Zi-qzgVrRJajJFNn_6Dy6mB0JniwLsePCt49KuhBD1OfwjDvvzIdg-QA3v5mBHs_jAqrvZHUwUgqG0ndGkmxXPTm8RjvS_44JwP0AKSc8muID73_R_Y3L5HT6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473245973</pqid></control><display><type>article</type><title>Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants</title><source>Nature_系列刊</source><source>Springer Nature</source><source>Alma/SFX Local Collection</source><creator>Namjou, Bahram ; Stanaway, Ian B. ; Lingren, Todd ; Mentch, Frank D. ; Benoit, Barbara ; Dikilitas, Ozan ; Niu, Xinnan ; Shang, Ning ; Shoemaker, Ashley H. ; Carey, David J. ; Mirshahi, Tooraj ; Singh, Rajbir ; Nestor, Jordan G. ; Hakonarson, Hakon ; Denny, Joshua C. ; Crosslin, David R. ; Jarvik, Gail P. ; Kullo, Iftikhar J. ; Williams, Marc S. ; Harley, John B.</creator><creatorcontrib>Namjou, Bahram ; Stanaway, Ian B. ; Lingren, Todd ; Mentch, Frank D. ; Benoit, Barbara ; Dikilitas, Ozan ; Niu, Xinnan ; Shang, Ning ; Shoemaker, Ashley H. ; Carey, David J. ; Mirshahi, Tooraj ; Singh, Rajbir ; Nestor, Jordan G. ; Hakonarson, Hakon ; Denny, Joshua C. ; Crosslin, David R. ; Jarvik, Gail P. ; Kullo, Iftikhar J. ; Williams, Marc S. ; Harley, John B. ; eMERGE Network ; The eMERGE Network</creatorcontrib><description>Background/Objectives
Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170
MC4R
variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of
MC4R
variants in large cohort of different ancestries, we evaluated the
MC4R
coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus.
Subjects/Methods
The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping.
Results
Targeted sequencing data of
MC4R
revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m
2
. In GWAS analysis, in addition to known risk haplotype upstream of
MC4R
(best variant rs6567160 (
P
= 5.36 × 10
−25
, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (
P
= 6.23 × 10
−08
, Beta = −0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI.
Conclusions
MC4R
screening in a large eMERGE cohort confirmed many previous findings, extend the
MC4R
pleotropic effects, and discovered additional
MC4R
rare alleles that probably contribute to obesity.</description><identifier>ISSN: 0307-0565</identifier><identifier>ISSN: 1476-5497</identifier><identifier>EISSN: 1476-5497</identifier><identifier>DOI: 10.1038/s41366-020-00675-4</identifier><identifier>PMID: 32952152</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 45/43 ; 631/208/135 ; 692/163/2743/393 ; Adult ; Aged ; Body Mass Index ; Body size ; Cell receptors ; Cohort Studies ; Diabetes mellitus (non-insulin dependent) ; Diabetic nephropathy ; Energy balance ; Epidemiology ; Female ; Food intake ; Genetic aspects ; Genetic research ; Genetic variation ; Genetic Variation - genetics ; Genome-Wide Association Study ; Genomes ; Genotyping ; Haplotypes ; Health aspects ; Health Promotion and Disease Prevention ; Homeostasis ; Humans ; Internal Medicine ; Male ; Medicine ; Medicine & Public Health ; Melanocortin ; Melanocortin MC4 receptors ; Metabolic Diseases ; Middle Aged ; Nephropathy ; Obesity ; Obesity - epidemiology ; Obesity - genetics ; Public Health ; Receptor, Melanocortin, Type 4 - genetics ; Regression analysis ; Renal failure ; Risk factors</subject><ispartof>International Journal of Obesity, 2021, Vol.45 (1), p.155-169</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453</citedby><cites>FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453</cites><orcidid>0000-0002-9906-8608 ; 0000-0003-1418-3103 ; 0000-0002-6524-3471 ; 0000-0002-0754-3820 ; 0000-0003-4452-7878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32952152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Namjou, Bahram</creatorcontrib><creatorcontrib>Stanaway, Ian B.</creatorcontrib><creatorcontrib>Lingren, Todd</creatorcontrib><creatorcontrib>Mentch, Frank D.</creatorcontrib><creatorcontrib>Benoit, Barbara</creatorcontrib><creatorcontrib>Dikilitas, Ozan</creatorcontrib><creatorcontrib>Niu, Xinnan</creatorcontrib><creatorcontrib>Shang, Ning</creatorcontrib><creatorcontrib>Shoemaker, Ashley H.</creatorcontrib><creatorcontrib>Carey, David J.</creatorcontrib><creatorcontrib>Mirshahi, Tooraj</creatorcontrib><creatorcontrib>Singh, Rajbir</creatorcontrib><creatorcontrib>Nestor, Jordan G.</creatorcontrib><creatorcontrib>Hakonarson, Hakon</creatorcontrib><creatorcontrib>Denny, Joshua C.</creatorcontrib><creatorcontrib>Crosslin, David R.</creatorcontrib><creatorcontrib>Jarvik, Gail P.</creatorcontrib><creatorcontrib>Kullo, Iftikhar J.</creatorcontrib><creatorcontrib>Williams, Marc S.</creatorcontrib><creatorcontrib>Harley, John B.</creatorcontrib><creatorcontrib>eMERGE Network</creatorcontrib><creatorcontrib>The eMERGE Network</creatorcontrib><title>Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants</title><title>International Journal of Obesity</title><addtitle>Int J Obes</addtitle><addtitle>Int J Obes (Lond)</addtitle><description>Background/Objectives
Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170
MC4R
variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of
MC4R
variants in large cohort of different ancestries, we evaluated the
MC4R
coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus.
Subjects/Methods
The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping.
Results
Targeted sequencing data of
MC4R
revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m
2
. In GWAS analysis, in addition to known risk haplotype upstream of
MC4R
(best variant rs6567160 (
P
= 5.36 × 10
−25
, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (
P
= 6.23 × 10
−08
, Beta = −0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI.
Conclusions
MC4R
screening in a large eMERGE cohort confirmed many previous findings, extend the
MC4R
pleotropic effects, and discovered additional
MC4R
rare alleles that probably contribute to obesity.</description><subject>45</subject><subject>45/23</subject><subject>45/43</subject><subject>631/208/135</subject><subject>692/163/2743/393</subject><subject>Adult</subject><subject>Aged</subject><subject>Body Mass Index</subject><subject>Body size</subject><subject>Cell receptors</subject><subject>Cohort Studies</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetic nephropathy</subject><subject>Energy balance</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Food intake</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic variation</subject><subject>Genetic Variation - genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Haplotypes</subject><subject>Health aspects</subject><subject>Health Promotion and Disease Prevention</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Melanocortin</subject><subject>Melanocortin MC4 receptors</subject><subject>Metabolic Diseases</subject><subject>Middle Aged</subject><subject>Nephropathy</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>Obesity - genetics</subject><subject>Public Health</subject><subject>Receptor, Melanocortin, Type 4 - genetics</subject><subject>Regression analysis</subject><subject>Renal failure</subject><subject>Risk factors</subject><issn>0307-0565</issn><issn>1476-5497</issn><issn>1476-5497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kl1rFDEUhgdR7Fr9A15IQBBvpmbyOXMjlGWtQotQ9DpkMic7qTPJmsys7L83261tV0RyEXLOc97knLxF8brCZxWm9YfEKipEiQkuMRaSl-xJsaiYFCVnjXxaLDDFssRc8JPiRUo3GGPOMXlenFDScFJxsij61VYPs55c8ChYNPWArpbsGq3BA9ImhpQQXK2uL1bIw_QrxB_IdeAnZx0kNGq_Q7OPsAlxgg6FFpKbdqVOKRin96Gtjk77Kb0snlk9JHh1t58W3z-tvi0_l5dfL74szy9Lw2rJysZykA3ImhshOtqatuONbXVnoatpR_KxZqaqmLUgWmMFNDUBAx3jutGM09Pi40F3M7cjdCa_NepBbaIbddypoJ06znjXq3XYKik5kbzKAu_vBGL4OUOa1OiSgWHQHsKcFGGMCcwoxRl9-xd6E-boc3uZkpQw3kj6QK31AMp5G_K9Zi-qzgVrRJajJFNn_6Dy6mB0JniwLsePCt49KuhBD1OfwjDvvzIdg-QA3v5mBHs_jAqrvZHUwUgqG0ndGkmxXPTm8RjvS_44JwP0AKSc8muID73_R_Y3L5HT6Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Namjou, Bahram</creator><creator>Stanaway, Ian B.</creator><creator>Lingren, Todd</creator><creator>Mentch, Frank D.</creator><creator>Benoit, Barbara</creator><creator>Dikilitas, Ozan</creator><creator>Niu, Xinnan</creator><creator>Shang, Ning</creator><creator>Shoemaker, Ashley H.</creator><creator>Carey, David J.</creator><creator>Mirshahi, Tooraj</creator><creator>Singh, Rajbir</creator><creator>Nestor, Jordan G.</creator><creator>Hakonarson, Hakon</creator><creator>Denny, Joshua C.</creator><creator>Crosslin, David R.</creator><creator>Jarvik, Gail P.</creator><creator>Kullo, Iftikhar J.</creator><creator>Williams, Marc S.</creator><creator>Harley, John B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7TS</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9906-8608</orcidid><orcidid>https://orcid.org/0000-0003-1418-3103</orcidid><orcidid>https://orcid.org/0000-0002-6524-3471</orcidid><orcidid>https://orcid.org/0000-0002-0754-3820</orcidid><orcidid>https://orcid.org/0000-0003-4452-7878</orcidid></search><sort><creationdate>2021</creationdate><title>Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants</title><author>Namjou, Bahram ; Stanaway, Ian B. ; Lingren, Todd ; Mentch, Frank D. ; Benoit, Barbara ; Dikilitas, Ozan ; Niu, Xinnan ; Shang, Ning ; Shoemaker, Ashley H. ; Carey, David J. ; Mirshahi, Tooraj ; Singh, Rajbir ; Nestor, Jordan G. ; Hakonarson, Hakon ; Denny, Joshua C. ; Crosslin, David R. ; Jarvik, Gail P. ; Kullo, Iftikhar J. ; Williams, Marc S. ; Harley, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45</topic><topic>45/23</topic><topic>45/43</topic><topic>631/208/135</topic><topic>692/163/2743/393</topic><topic>Adult</topic><topic>Aged</topic><topic>Body Mass Index</topic><topic>Body size</topic><topic>Cell receptors</topic><topic>Cohort Studies</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetic nephropathy</topic><topic>Energy balance</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Food intake</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic variation</topic><topic>Genetic Variation - genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Haplotypes</topic><topic>Health aspects</topic><topic>Health Promotion and Disease Prevention</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Melanocortin</topic><topic>Melanocortin MC4 receptors</topic><topic>Metabolic Diseases</topic><topic>Middle Aged</topic><topic>Nephropathy</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>Obesity - genetics</topic><topic>Public Health</topic><topic>Receptor, Melanocortin, Type 4 - genetics</topic><topic>Regression analysis</topic><topic>Renal failure</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namjou, Bahram</creatorcontrib><creatorcontrib>Stanaway, Ian B.</creatorcontrib><creatorcontrib>Lingren, Todd</creatorcontrib><creatorcontrib>Mentch, Frank D.</creatorcontrib><creatorcontrib>Benoit, Barbara</creatorcontrib><creatorcontrib>Dikilitas, Ozan</creatorcontrib><creatorcontrib>Niu, Xinnan</creatorcontrib><creatorcontrib>Shang, Ning</creatorcontrib><creatorcontrib>Shoemaker, Ashley H.</creatorcontrib><creatorcontrib>Carey, David J.</creatorcontrib><creatorcontrib>Mirshahi, Tooraj</creatorcontrib><creatorcontrib>Singh, Rajbir</creatorcontrib><creatorcontrib>Nestor, Jordan G.</creatorcontrib><creatorcontrib>Hakonarson, Hakon</creatorcontrib><creatorcontrib>Denny, Joshua C.</creatorcontrib><creatorcontrib>Crosslin, David R.</creatorcontrib><creatorcontrib>Jarvik, Gail P.</creatorcontrib><creatorcontrib>Kullo, Iftikhar J.</creatorcontrib><creatorcontrib>Williams, Marc S.</creatorcontrib><creatorcontrib>Harley, John B.</creatorcontrib><creatorcontrib>eMERGE Network</creatorcontrib><creatorcontrib>The eMERGE Network</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International Journal of Obesity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namjou, Bahram</au><au>Stanaway, Ian B.</au><au>Lingren, Todd</au><au>Mentch, Frank D.</au><au>Benoit, Barbara</au><au>Dikilitas, Ozan</au><au>Niu, Xinnan</au><au>Shang, Ning</au><au>Shoemaker, Ashley H.</au><au>Carey, David J.</au><au>Mirshahi, Tooraj</au><au>Singh, Rajbir</au><au>Nestor, Jordan G.</au><au>Hakonarson, Hakon</au><au>Denny, Joshua C.</au><au>Crosslin, David R.</au><au>Jarvik, Gail P.</au><au>Kullo, Iftikhar J.</au><au>Williams, Marc S.</au><au>Harley, John B.</au><aucorp>eMERGE Network</aucorp><aucorp>The eMERGE Network</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants</atitle><jtitle>International Journal of Obesity</jtitle><stitle>Int J Obes</stitle><addtitle>Int J Obes (Lond)</addtitle><date>2021</date><risdate>2021</risdate><volume>45</volume><issue>1</issue><spage>155</spage><epage>169</epage><pages>155-169</pages><issn>0307-0565</issn><issn>1476-5497</issn><eissn>1476-5497</eissn><abstract>Background/Objectives
Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170
MC4R
variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of
MC4R
variants in large cohort of different ancestries, we evaluated the
MC4R
coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus.
Subjects/Methods
The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping.
Results
Targeted sequencing data of
MC4R
revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m
2
. In GWAS analysis, in addition to known risk haplotype upstream of
MC4R
(best variant rs6567160 (
P
= 5.36 × 10
−25
, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (
P
= 6.23 × 10
−08
, Beta = −0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI.
Conclusions
MC4R
screening in a large eMERGE cohort confirmed many previous findings, extend the
MC4R
pleotropic effects, and discovered additional
MC4R
rare alleles that probably contribute to obesity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32952152</pmid><doi>10.1038/s41366-020-00675-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9906-8608</orcidid><orcidid>https://orcid.org/0000-0003-1418-3103</orcidid><orcidid>https://orcid.org/0000-0002-6524-3471</orcidid><orcidid>https://orcid.org/0000-0002-0754-3820</orcidid><orcidid>https://orcid.org/0000-0003-4452-7878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-0565 |
ispartof | International Journal of Obesity, 2021, Vol.45 (1), p.155-169 |
issn | 0307-0565 1476-5497 1476-5497 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7752751 |
source | Nature_系列刊; Springer Nature; Alma/SFX Local Collection |
subjects | 45 45/23 45/43 631/208/135 692/163/2743/393 Adult Aged Body Mass Index Body size Cell receptors Cohort Studies Diabetes mellitus (non-insulin dependent) Diabetic nephropathy Energy balance Epidemiology Female Food intake Genetic aspects Genetic research Genetic variation Genetic Variation - genetics Genome-Wide Association Study Genomes Genotyping Haplotypes Health aspects Health Promotion and Disease Prevention Homeostasis Humans Internal Medicine Male Medicine Medicine & Public Health Melanocortin Melanocortin MC4 receptors Metabolic Diseases Middle Aged Nephropathy Obesity Obesity - epidemiology Obesity - genetics Public Health Receptor, Melanocortin, Type 4 - genetics Regression analysis Renal failure Risk factors |
title | Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20MC4R%20gene%20across%20eMERGE%20network%20identifies%20many%20unreported%20obesity-associated%20variants&rft.jtitle=International%20Journal%20of%20Obesity&rft.au=Namjou,%20Bahram&rft.aucorp=eMERGE%20Network&rft.date=2021&rft.volume=45&rft.issue=1&rft.spage=155&rft.epage=169&rft.pages=155-169&rft.issn=0307-0565&rft.eissn=1476-5497&rft_id=info:doi/10.1038/s41366-020-00675-4&rft_dat=%3Cgale_pubme%3EA649644632%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4874-9f5e79e785c66d3bcbd59fbadfed83d2bd584c114ffe6bcf6e982eced45a9a453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473245973&rft_id=info:pmid/32952152&rft_galeid=A649644632&rfr_iscdi=true |