Loading…
Induced Production, Synthesis, and Immunomodulatory Action of Clostrisulfone, a Diarylsulfone from Clostridium acetobutylicum
The anaerobe Clostridium acetobutylicum belongs to the most important industrially used bacteria. Whereas genome mining points to a high potential for secondary metabolism in C. acetobutylicum, the functions of most biosynthetic gene clusters are cryptic. We report that the addition of supra‐physiol...
Saved in:
Published in: | Chemistry : a European journal 2020-12, Vol.26 (68), p.15855-15858 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anaerobe Clostridium acetobutylicum belongs to the most important industrially used bacteria. Whereas genome mining points to a high potential for secondary metabolism in C. acetobutylicum, the functions of most biosynthetic gene clusters are cryptic. We report that the addition of supra‐physiological concentrations of cysteine triggered the formation of a novel natural product, clostrisulfone (1). Its structure was fully elucidated by NMR, MS and the chemical synthesis of a reference compound. Clostrisulfone is the first reported natural product with a diphenylsulfone scaffold. A biomimetic synthesis suggests that pentamethylchromanol‐derived radicals capture sulfur dioxide to form 1. In a cell‐based assay using murine macrophages a biphasic and dose‐dependent regulation of the LPS‐induced release of nitric oxide was observed in the presence of 1.
Induction of the industrial anaerobe Clostridium acetobutylicum with cysteine led to the discovery of an unprecedented diarylsulfone natural product named clostrisulfone that likely results from sulfur dioxide capture by chromane‐derived radicals. Its structure was elucidated by NMR and confirmed by synthesis. The tocopherol‐related molecule exerts immunomodulatory activities (see figure). |
---|---|
ISSN: | 0947-6539 1521-3765 1521-3765 |
DOI: | 10.1002/chem.202003500 |