Loading…
The Evolutionary Significance of RNAi in the Fungal Kingdom
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The ess...
Saved in:
Published in: | International journal of molecular sciences 2020-12, Vol.21 (24), p.9348 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363 |
container_end_page | |
container_issue | 24 |
container_start_page | 9348 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Lax, Carlos Tahiri, Ghizlane Patiño-Medina, José Alberto Cánovas-Márquez, José T Pérez-Ruiz, José A Osorio-Concepción, Macario Navarro, Eusebio Calo, Silvia |
description | RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises. |
doi_str_mv | 10.3390/ijms21249348 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7763443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469687568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363</originalsourceid><addsrcrecordid>eNpdkVFLwzAUhYMobk7ffJaCLz5YTXOzJEUQxthUHAq695Cl6ZbRJrNpB_57OzbH9OleuB_nnsNB6DLBdwApvrfLMpCE0BSoOELdhBISY8z48cHeQWchLDEmQPrpKeoAACaU8i56mC5MNFr7oqmtd6r6jj7t3NncauW0iXwefbwNbGRdVLfguHFzVUSv1s0zX56jk1wVwVzsZg9Nx6Pp8DmevD-9DAeTWNOE1LHIjVZ9zWcakpmmuTA5TjUzucGCag6ci0RroZQiimeKpkIDE0xliQABDHrocSu7amalybRxdaUKuaps2fqVXln59-LsQs79WnLOgFJoBW52ApX_akyoZWmDNkWhnPFNkIRyoBh4-62Hrv-hS99Urk3XUixlgvfZhrrdUrryIVQm35tJsNyUIg9LafGrwwB7-LcF-AFi4Yft</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469687568</pqid></control><display><type>article</type><title>The Evolutionary Significance of RNAi in the Fungal Kingdom</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Lax, Carlos ; Tahiri, Ghizlane ; Patiño-Medina, José Alberto ; Cánovas-Márquez, José T ; Pérez-Ruiz, José A ; Osorio-Concepción, Macario ; Navarro, Eusebio ; Calo, Silvia</creator><creatorcontrib>Lax, Carlos ; Tahiri, Ghizlane ; Patiño-Medina, José Alberto ; Cánovas-Márquez, José T ; Pérez-Ruiz, José A ; Osorio-Concepción, Macario ; Navarro, Eusebio ; Calo, Silvia</creatorcontrib><description>RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21249348</identifier><identifier>PMID: 33302447</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Deoxyribonucleic acid ; DNA ; DNA methylation ; Double-stranded RNA ; Drug tolerance ; Eukaryotes ; Evolution, Molecular ; Fungi ; Fungi - genetics ; Gene expression ; Gene Expression Regulation, Fungal ; Gene silencing ; Genomes ; Infections ; Organisms ; Proteins ; Review ; Ribonuclease III ; RNA Interference ; RNA polymerase ; RNA-induced silencing complex ; RNA-mediated interference ; siRNA ; Viral infections ; Virulence ; Viruses</subject><ispartof>International journal of molecular sciences, 2020-12, Vol.21 (24), p.9348</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363</citedby><cites>FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363</cites><orcidid>0000-0003-2569-7716 ; 0000-0002-5406-1613 ; 0000-0003-3014-7372 ; 0000-0003-4489-1960 ; 0000-0001-6608-4145 ; 0000-0002-5901-5472 ; 0000-0002-2059-303X ; 0000-0002-3091-4378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2469687568/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2469687568?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33302447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lax, Carlos</creatorcontrib><creatorcontrib>Tahiri, Ghizlane</creatorcontrib><creatorcontrib>Patiño-Medina, José Alberto</creatorcontrib><creatorcontrib>Cánovas-Márquez, José T</creatorcontrib><creatorcontrib>Pérez-Ruiz, José A</creatorcontrib><creatorcontrib>Osorio-Concepción, Macario</creatorcontrib><creatorcontrib>Navarro, Eusebio</creatorcontrib><creatorcontrib>Calo, Silvia</creatorcontrib><title>The Evolutionary Significance of RNAi in the Fungal Kingdom</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.</description><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Double-stranded RNA</subject><subject>Drug tolerance</subject><subject>Eukaryotes</subject><subject>Evolution, Molecular</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene silencing</subject><subject>Genomes</subject><subject>Infections</subject><subject>Organisms</subject><subject>Proteins</subject><subject>Review</subject><subject>Ribonuclease III</subject><subject>RNA Interference</subject><subject>RNA polymerase</subject><subject>RNA-induced silencing complex</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>Viral infections</subject><subject>Virulence</subject><subject>Viruses</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVFLwzAUhYMobk7ffJaCLz5YTXOzJEUQxthUHAq695Cl6ZbRJrNpB_57OzbH9OleuB_nnsNB6DLBdwApvrfLMpCE0BSoOELdhBISY8z48cHeQWchLDEmQPrpKeoAACaU8i56mC5MNFr7oqmtd6r6jj7t3NncauW0iXwefbwNbGRdVLfguHFzVUSv1s0zX56jk1wVwVzsZg9Nx6Pp8DmevD-9DAeTWNOE1LHIjVZ9zWcakpmmuTA5TjUzucGCag6ci0RroZQiimeKpkIDE0xliQABDHrocSu7amalybRxdaUKuaps2fqVXln59-LsQs79WnLOgFJoBW52ApX_akyoZWmDNkWhnPFNkIRyoBh4-62Hrv-hS99Urk3XUixlgvfZhrrdUrryIVQm35tJsNyUIg9LafGrwwB7-LcF-AFi4Yft</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Lax, Carlos</creator><creator>Tahiri, Ghizlane</creator><creator>Patiño-Medina, José Alberto</creator><creator>Cánovas-Márquez, José T</creator><creator>Pérez-Ruiz, José A</creator><creator>Osorio-Concepción, Macario</creator><creator>Navarro, Eusebio</creator><creator>Calo, Silvia</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2569-7716</orcidid><orcidid>https://orcid.org/0000-0002-5406-1613</orcidid><orcidid>https://orcid.org/0000-0003-3014-7372</orcidid><orcidid>https://orcid.org/0000-0003-4489-1960</orcidid><orcidid>https://orcid.org/0000-0001-6608-4145</orcidid><orcidid>https://orcid.org/0000-0002-5901-5472</orcidid><orcidid>https://orcid.org/0000-0002-2059-303X</orcidid><orcidid>https://orcid.org/0000-0002-3091-4378</orcidid></search><sort><creationdate>20201208</creationdate><title>The Evolutionary Significance of RNAi in the Fungal Kingdom</title><author>Lax, Carlos ; Tahiri, Ghizlane ; Patiño-Medina, José Alberto ; Cánovas-Márquez, José T ; Pérez-Ruiz, José A ; Osorio-Concepción, Macario ; Navarro, Eusebio ; Calo, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Double-stranded RNA</topic><topic>Drug tolerance</topic><topic>Eukaryotes</topic><topic>Evolution, Molecular</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene silencing</topic><topic>Genomes</topic><topic>Infections</topic><topic>Organisms</topic><topic>Proteins</topic><topic>Review</topic><topic>Ribonuclease III</topic><topic>RNA Interference</topic><topic>RNA polymerase</topic><topic>RNA-induced silencing complex</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>Viral infections</topic><topic>Virulence</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lax, Carlos</creatorcontrib><creatorcontrib>Tahiri, Ghizlane</creatorcontrib><creatorcontrib>Patiño-Medina, José Alberto</creatorcontrib><creatorcontrib>Cánovas-Márquez, José T</creatorcontrib><creatorcontrib>Pérez-Ruiz, José A</creatorcontrib><creatorcontrib>Osorio-Concepción, Macario</creatorcontrib><creatorcontrib>Navarro, Eusebio</creatorcontrib><creatorcontrib>Calo, Silvia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lax, Carlos</au><au>Tahiri, Ghizlane</au><au>Patiño-Medina, José Alberto</au><au>Cánovas-Márquez, José T</au><au>Pérez-Ruiz, José A</au><au>Osorio-Concepción, Macario</au><au>Navarro, Eusebio</au><au>Calo, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Evolutionary Significance of RNAi in the Fungal Kingdom</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>21</volume><issue>24</issue><spage>9348</spage><pages>9348-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33302447</pmid><doi>10.3390/ijms21249348</doi><orcidid>https://orcid.org/0000-0003-2569-7716</orcidid><orcidid>https://orcid.org/0000-0002-5406-1613</orcidid><orcidid>https://orcid.org/0000-0003-3014-7372</orcidid><orcidid>https://orcid.org/0000-0003-4489-1960</orcidid><orcidid>https://orcid.org/0000-0001-6608-4145</orcidid><orcidid>https://orcid.org/0000-0002-5901-5472</orcidid><orcidid>https://orcid.org/0000-0002-2059-303X</orcidid><orcidid>https://orcid.org/0000-0002-3091-4378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-12, Vol.21 (24), p.9348 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7763443 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Deoxyribonucleic acid DNA DNA methylation Double-stranded RNA Drug tolerance Eukaryotes Evolution, Molecular Fungi Fungi - genetics Gene expression Gene Expression Regulation, Fungal Gene silencing Genomes Infections Organisms Proteins Review Ribonuclease III RNA Interference RNA polymerase RNA-induced silencing complex RNA-mediated interference siRNA Viral infections Virulence Viruses |
title | The Evolutionary Significance of RNAi in the Fungal Kingdom |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Evolutionary%20Significance%20of%20RNAi%20in%20the%20Fungal%20Kingdom&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lax,%20Carlos&rft.date=2020-12-08&rft.volume=21&rft.issue=24&rft.spage=9348&rft.pages=9348-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21249348&rft_dat=%3Cproquest_pubme%3E2469687568%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-8feca5c7bc31bc4f8ef09c6efe084c737781cc8aaa2a7da498c3686ad1838363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469687568&rft_id=info:pmid/33302447&rfr_iscdi=true |