Loading…

Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure

Severe plastic deformation (SPD) has led to the discovery of ever stronger materials, either by bulk modification or by surface deformation under sliding contact. These processes increase the strength of an alloy through the transformation of the deformation substructure into submicrometric grains o...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-12, Vol.13 (24), p.5702
Main Authors: Figueroa, Carlos Gabriel, Jacobo, Víctor Hugo, Cortés-Pérez, Jacinto, Schouwenaars, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3
cites cdi_FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3
container_end_page
container_issue 24
container_start_page 5702
container_title Materials
container_volume 13
creator Figueroa, Carlos Gabriel
Jacobo, Víctor Hugo
Cortés-Pérez, Jacinto
Schouwenaars, Rafael
description Severe plastic deformation (SPD) has led to the discovery of ever stronger materials, either by bulk modification or by surface deformation under sliding contact. These processes increase the strength of an alloy through the transformation of the deformation substructure into submicrometric grains or twins. Here, surface SPD was induced by plastic deformation under frictional contact with a spherical tool in a hot rolled CuAlBe-shape memory alloy. This created a microstructure consisting of a few course martensite variants and ultrafine intersecting bands of secondary martensite and/or austenite, increasing the nanohardness of hot-rolled material from 2.6 to 10.3 GPa. In as-cast material the increase was from 2.4 to 5 GPa. The friction coefficient and surface damage were significantly higher in the hot rolled condition. Metallographic evidence showed that hot rolling was not followed by recrystallisation. This means that a remaining dislocation substructure can lock the martensite and impedes back-transformation to austenite. In the as-cast material, a very fine but softer austenite microstructure was found. The observed difference in properties provides an opportunity to fine-tune the process either for optimal wear resistance or for maximum surface hardness. The modified hot-rolled material possesses the highest hardness obtained to date in nanostructured non-ferrous alloys.
doi_str_mv 10.3390/ma13245702
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7765020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471219108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3</originalsourceid><addsrcrecordid>eNpdkd9qFDEUxoMottTe-AAS8EaErfk3k8mNsC61Cq0WqtfhTOakO2VmsiYTcR-rr-CTmbV1rebmBPI73_lyPkKec3YipWFvRuBSqEoz8YgccmPqBTdKPX5wPyDHKd2wcqTkjTBPyYGUUujSc0h-XOXowSH9BFNIc8xuzrGfrmnwFOgqL4d3SK_WsEF6gWOIW7ochrCllzF02WEq0M4J_XlL2UlNzy7ht9IaYjdhSvQC4oxT6ufS37u4H4HPyBMPQ8Lj-3pEvr4__bL6sDj_fPZxtTxfOMXqedG0qjZNxbx0KCtvvFbSq7aRLTS1Rw2o64Z7LRQ6YdqurlQFymtnQMmWdfKIvL3T3eR2xM7hNEcY7Cb2I8StDdDbf1-mfm2vw3erdV0xwYrAq3uBGL5lTLMd--RwGGDCkJMVSjPDGFeyoC__Q29CjlP53o7ighvOmkK9vqN260gR_d4MZ3aXqf2baYFfPLS_R_8kKH8BtnycbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471219108</pqid></control><display><type>article</type><title>Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Figueroa, Carlos Gabriel ; Jacobo, Víctor Hugo ; Cortés-Pérez, Jacinto ; Schouwenaars, Rafael</creator><creatorcontrib>Figueroa, Carlos Gabriel ; Jacobo, Víctor Hugo ; Cortés-Pérez, Jacinto ; Schouwenaars, Rafael</creatorcontrib><description>Severe plastic deformation (SPD) has led to the discovery of ever stronger materials, either by bulk modification or by surface deformation under sliding contact. These processes increase the strength of an alloy through the transformation of the deformation substructure into submicrometric grains or twins. Here, surface SPD was induced by plastic deformation under frictional contact with a spherical tool in a hot rolled CuAlBe-shape memory alloy. This created a microstructure consisting of a few course martensite variants and ultrafine intersecting bands of secondary martensite and/or austenite, increasing the nanohardness of hot-rolled material from 2.6 to 10.3 GPa. In as-cast material the increase was from 2.4 to 5 GPa. The friction coefficient and surface damage were significantly higher in the hot rolled condition. Metallographic evidence showed that hot rolling was not followed by recrystallisation. This means that a remaining dislocation substructure can lock the martensite and impedes back-transformation to austenite. In the as-cast material, a very fine but softer austenite microstructure was found. The observed difference in properties provides an opportunity to fine-tune the process either for optimal wear resistance or for maximum surface hardness. The modified hot-rolled material possesses the highest hardness obtained to date in nanostructured non-ferrous alloys.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13245702</identifier><identifier>PMID: 33327570</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesive wear ; Alloys ; Austenite ; Coefficient of friction ; Crack initiation ; Ferrous alloys ; Hot rolling ; Martensite ; Martensitic transformations ; Metal fatigue ; Microscopy ; Microstructure ; Nanohardness ; Nonferrous alloys ; Plastic deformation ; Recrystallization ; Shape memory alloys ; Sliding contact ; Strain hardening ; Substructures ; Surface hardness ; Topography ; Ultrafines ; Wear resistance</subject><ispartof>Materials, 2020-12, Vol.13 (24), p.5702</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3</citedby><cites>FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3</cites><orcidid>0000-0003-2913-7273 ; 0000-0003-4619-9249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471219108/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471219108?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33327570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Figueroa, Carlos Gabriel</creatorcontrib><creatorcontrib>Jacobo, Víctor Hugo</creatorcontrib><creatorcontrib>Cortés-Pérez, Jacinto</creatorcontrib><creatorcontrib>Schouwenaars, Rafael</creatorcontrib><title>Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Severe plastic deformation (SPD) has led to the discovery of ever stronger materials, either by bulk modification or by surface deformation under sliding contact. These processes increase the strength of an alloy through the transformation of the deformation substructure into submicrometric grains or twins. Here, surface SPD was induced by plastic deformation under frictional contact with a spherical tool in a hot rolled CuAlBe-shape memory alloy. This created a microstructure consisting of a few course martensite variants and ultrafine intersecting bands of secondary martensite and/or austenite, increasing the nanohardness of hot-rolled material from 2.6 to 10.3 GPa. In as-cast material the increase was from 2.4 to 5 GPa. The friction coefficient and surface damage were significantly higher in the hot rolled condition. Metallographic evidence showed that hot rolling was not followed by recrystallisation. This means that a remaining dislocation substructure can lock the martensite and impedes back-transformation to austenite. In the as-cast material, a very fine but softer austenite microstructure was found. The observed difference in properties provides an opportunity to fine-tune the process either for optimal wear resistance or for maximum surface hardness. The modified hot-rolled material possesses the highest hardness obtained to date in nanostructured non-ferrous alloys.</description><subject>Adhesive wear</subject><subject>Alloys</subject><subject>Austenite</subject><subject>Coefficient of friction</subject><subject>Crack initiation</subject><subject>Ferrous alloys</subject><subject>Hot rolling</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Metal fatigue</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Nanohardness</subject><subject>Nonferrous alloys</subject><subject>Plastic deformation</subject><subject>Recrystallization</subject><subject>Shape memory alloys</subject><subject>Sliding contact</subject><subject>Strain hardening</subject><subject>Substructures</subject><subject>Surface hardness</subject><subject>Topography</subject><subject>Ultrafines</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkd9qFDEUxoMottTe-AAS8EaErfk3k8mNsC61Cq0WqtfhTOakO2VmsiYTcR-rr-CTmbV1rebmBPI73_lyPkKec3YipWFvRuBSqEoz8YgccmPqBTdKPX5wPyDHKd2wcqTkjTBPyYGUUujSc0h-XOXowSH9BFNIc8xuzrGfrmnwFOgqL4d3SK_WsEF6gWOIW7ochrCllzF02WEq0M4J_XlL2UlNzy7ht9IaYjdhSvQC4oxT6ufS37u4H4HPyBMPQ8Lj-3pEvr4__bL6sDj_fPZxtTxfOMXqedG0qjZNxbx0KCtvvFbSq7aRLTS1Rw2o64Z7LRQ6YdqurlQFymtnQMmWdfKIvL3T3eR2xM7hNEcY7Cb2I8StDdDbf1-mfm2vw3erdV0xwYrAq3uBGL5lTLMd--RwGGDCkJMVSjPDGFeyoC__Q29CjlP53o7ighvOmkK9vqN260gR_d4MZ3aXqf2baYFfPLS_R_8kKH8BtnycbA</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Figueroa, Carlos Gabriel</creator><creator>Jacobo, Víctor Hugo</creator><creator>Cortés-Pérez, Jacinto</creator><creator>Schouwenaars, Rafael</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2913-7273</orcidid><orcidid>https://orcid.org/0000-0003-4619-9249</orcidid></search><sort><creationdate>20201214</creationdate><title>Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure</title><author>Figueroa, Carlos Gabriel ; Jacobo, Víctor Hugo ; Cortés-Pérez, Jacinto ; Schouwenaars, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesive wear</topic><topic>Alloys</topic><topic>Austenite</topic><topic>Coefficient of friction</topic><topic>Crack initiation</topic><topic>Ferrous alloys</topic><topic>Hot rolling</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Metal fatigue</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Nanohardness</topic><topic>Nonferrous alloys</topic><topic>Plastic deformation</topic><topic>Recrystallization</topic><topic>Shape memory alloys</topic><topic>Sliding contact</topic><topic>Strain hardening</topic><topic>Substructures</topic><topic>Surface hardness</topic><topic>Topography</topic><topic>Ultrafines</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figueroa, Carlos Gabriel</creatorcontrib><creatorcontrib>Jacobo, Víctor Hugo</creatorcontrib><creatorcontrib>Cortés-Pérez, Jacinto</creatorcontrib><creatorcontrib>Schouwenaars, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figueroa, Carlos Gabriel</au><au>Jacobo, Víctor Hugo</au><au>Cortés-Pérez, Jacinto</au><au>Schouwenaars, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>13</volume><issue>24</issue><spage>5702</spage><pages>5702-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Severe plastic deformation (SPD) has led to the discovery of ever stronger materials, either by bulk modification or by surface deformation under sliding contact. These processes increase the strength of an alloy through the transformation of the deformation substructure into submicrometric grains or twins. Here, surface SPD was induced by plastic deformation under frictional contact with a spherical tool in a hot rolled CuAlBe-shape memory alloy. This created a microstructure consisting of a few course martensite variants and ultrafine intersecting bands of secondary martensite and/or austenite, increasing the nanohardness of hot-rolled material from 2.6 to 10.3 GPa. In as-cast material the increase was from 2.4 to 5 GPa. The friction coefficient and surface damage were significantly higher in the hot rolled condition. Metallographic evidence showed that hot rolling was not followed by recrystallisation. This means that a remaining dislocation substructure can lock the martensite and impedes back-transformation to austenite. In the as-cast material, a very fine but softer austenite microstructure was found. The observed difference in properties provides an opportunity to fine-tune the process either for optimal wear resistance or for maximum surface hardness. The modified hot-rolled material possesses the highest hardness obtained to date in nanostructured non-ferrous alloys.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33327570</pmid><doi>10.3390/ma13245702</doi><orcidid>https://orcid.org/0000-0003-2913-7273</orcidid><orcidid>https://orcid.org/0000-0003-4619-9249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-12, Vol.13 (24), p.5702
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7765020
source PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Adhesive wear
Alloys
Austenite
Coefficient of friction
Crack initiation
Ferrous alloys
Hot rolling
Martensite
Martensitic transformations
Metal fatigue
Microscopy
Microstructure
Nanohardness
Nonferrous alloys
Plastic deformation
Recrystallization
Shape memory alloys
Sliding contact
Strain hardening
Substructures
Surface hardness
Topography
Ultrafines
Wear resistance
title Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Nanostructuring%20of%20a%20CuAlBe%20Shape%20Memory%20Alloy%20Produces%20a%2010.3%20%C2%B1%200.6%20GPa%20Nanohardness%20Martensite%20Microstructure&rft.jtitle=Materials&rft.au=Figueroa,%20Carlos%20Gabriel&rft.date=2020-12-14&rft.volume=13&rft.issue=24&rft.spage=5702&rft.pages=5702-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13245702&rft_dat=%3Cproquest_pubme%3E2471219108%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-8b469850f3ce35f9f743f4b83ba86fe7ae7681f724ec29bd6545a4f7c9a43b0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471219108&rft_id=info:pmid/33327570&rfr_iscdi=true