Loading…

Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model

The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanic...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 2021-01, Vol.49 (1), p.441-454
Main Authors: Morany, Adi, Lavon, Karin, Bluestein, Danny, Hamdan, Ashraf, Haj-Ali, Rami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3
cites cdi_FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3
container_end_page 454
container_issue 1
container_start_page 441
container_title Annals of biomedical engineering
container_volume 49
creator Morany, Adi
Lavon, Karin
Bluestein, Danny
Hamdan, Ashraf
Haj-Ali, Rami
description The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.
doi_str_mv 10.1007/s10439-020-02575-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473886767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVpaG7T_oEuiqCbbNyOJMuyNoUQkiaQkNLXVsjy6MbBV7qV5ED_fZXeNH0sAhKzmG_OzOEQ8orBWwag3mUGrdANcKhfKtnAE7JiUolGd333lKwANDSd7tp98jznGwDGeiGfkX3BFciWixUZP5e0uLIkO9NPmLcxZMw0enoeCq6TLTjSjzbZDZY0OXoUU6nlm51vkU6B2kBPZnQlxeYS3bUNk6tCp8s80zO0qdDLOOL8gux5O2d8eV8PyNfTky_HZ83F1Yfz46OLxrWqLfVqZ0EOou_ZoAcrlZaWufo0Ojmi8p6rzgJnViMfGAzgWu-ddqL3CL0XB-T9Tne7DBscHYZSfZltmjY2_TDRTubfTpiuzTreGqWU5JpXgcN7gRS_L5iL2UzZ4TzbgHHJhrdcCWhbzSr65j_0Ji4pVHuVUtVDpzpVKb6jXIo5J_QPxzAwdyGaXYimhmh-hWigDr3-28bDyO_UKiB2QK6tsMb0Z_cjsj8BpPqpOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473886767</pqid></control><display><type>article</type><title>Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model</title><source>Springer Nature</source><creator>Morany, Adi ; Lavon, Karin ; Bluestein, Danny ; Hamdan, Ashraf ; Haj-Ali, Rami</creator><creatorcontrib>Morany, Adi ; Lavon, Karin ; Bluestein, Danny ; Hamdan, Ashraf ; Haj-Ali, Rami</creatorcontrib><description>The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-020-02575-0</identifier><identifier>PMID: 32705423</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adult ; Aorta ; Aortic valve ; Biochemistry ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Boundary conditions ; Classical Mechanics ; Computed tomography ; Computed Tomography Angiography ; Computer Simulation ; Confidence ; Correlation analysis ; Diameters ; Ellipticity ; Finite Element Analysis ; Finite element method ; Heart ; Heart - diagnostic imaging ; Heart - physiology ; Heart valves ; Hemodynamics ; Humans ; Male ; Mathematical models ; Models, Cardiovascular ; Original Article ; Stress, Mechanical ; Stresses ; Structural models ; Ventricle</subject><ispartof>Annals of biomedical engineering, 2021-01, Vol.49 (1), p.441-454</ispartof><rights>Biomedical Engineering Society 2020</rights><rights>Biomedical Engineering Society 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3</citedby><cites>FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32705423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morany, Adi</creatorcontrib><creatorcontrib>Lavon, Karin</creatorcontrib><creatorcontrib>Bluestein, Danny</creatorcontrib><creatorcontrib>Hamdan, Ashraf</creatorcontrib><creatorcontrib>Haj-Ali, Rami</creatorcontrib><title>Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.</description><subject>Adult</subject><subject>Aorta</subject><subject>Aortic valve</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Computed tomography</subject><subject>Computed Tomography Angiography</subject><subject>Computer Simulation</subject><subject>Confidence</subject><subject>Correlation analysis</subject><subject>Diameters</subject><subject>Ellipticity</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Heart</subject><subject>Heart - diagnostic imaging</subject><subject>Heart - physiology</subject><subject>Heart valves</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Models, Cardiovascular</subject><subject>Original Article</subject><subject>Stress, Mechanical</subject><subject>Stresses</subject><subject>Structural models</subject><subject>Ventricle</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3TAQhUVpaG7T_oEuiqCbbNyOJMuyNoUQkiaQkNLXVsjy6MbBV7qV5ED_fZXeNH0sAhKzmG_OzOEQ8orBWwag3mUGrdANcKhfKtnAE7JiUolGd333lKwANDSd7tp98jznGwDGeiGfkX3BFciWixUZP5e0uLIkO9NPmLcxZMw0enoeCq6TLTjSjzbZDZY0OXoUU6nlm51vkU6B2kBPZnQlxeYS3bUNk6tCp8s80zO0qdDLOOL8gux5O2d8eV8PyNfTky_HZ83F1Yfz46OLxrWqLfVqZ0EOou_ZoAcrlZaWufo0Ojmi8p6rzgJnViMfGAzgWu-ddqL3CL0XB-T9Tne7DBscHYZSfZltmjY2_TDRTubfTpiuzTreGqWU5JpXgcN7gRS_L5iL2UzZ4TzbgHHJhrdcCWhbzSr65j_0Ji4pVHuVUtVDpzpVKb6jXIo5J_QPxzAwdyGaXYimhmh-hWigDr3-28bDyO_UKiB2QK6tsMb0Z_cjsj8BpPqpOw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Morany, Adi</creator><creator>Lavon, Karin</creator><creator>Bluestein, Danny</creator><creator>Hamdan, Ashraf</creator><creator>Haj-Ali, Rami</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model</title><author>Morany, Adi ; Lavon, Karin ; Bluestein, Danny ; Hamdan, Ashraf ; Haj-Ali, Rami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aorta</topic><topic>Aortic valve</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Computed tomography</topic><topic>Computed Tomography Angiography</topic><topic>Computer Simulation</topic><topic>Confidence</topic><topic>Correlation analysis</topic><topic>Diameters</topic><topic>Ellipticity</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Heart</topic><topic>Heart - diagnostic imaging</topic><topic>Heart - physiology</topic><topic>Heart valves</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Models, Cardiovascular</topic><topic>Original Article</topic><topic>Stress, Mechanical</topic><topic>Stresses</topic><topic>Structural models</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morany, Adi</creatorcontrib><creatorcontrib>Lavon, Karin</creatorcontrib><creatorcontrib>Bluestein, Danny</creatorcontrib><creatorcontrib>Hamdan, Ashraf</creatorcontrib><creatorcontrib>Haj-Ali, Rami</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morany, Adi</au><au>Lavon, Karin</au><au>Bluestein, Danny</au><au>Hamdan, Ashraf</au><au>Haj-Ali, Rami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>49</volume><issue>1</issue><spage>441</spage><epage>454</epage><pages>441-454</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32705423</pmid><doi>10.1007/s10439-020-02575-0</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2021-01, Vol.49 (1), p.441-454
issn 0090-6964
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7775292
source Springer Nature
subjects Adult
Aorta
Aortic valve
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Boundary conditions
Classical Mechanics
Computed tomography
Computed Tomography Angiography
Computer Simulation
Confidence
Correlation analysis
Diameters
Ellipticity
Finite Element Analysis
Finite element method
Heart
Heart - diagnostic imaging
Heart - physiology
Heart valves
Hemodynamics
Humans
Male
Mathematical models
Models, Cardiovascular
Original Article
Stress, Mechanical
Stresses
Structural models
Ventricle
title Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Responses%20of%20Integrated%20Parametric%20Aortic%20Valve%20in%20an%20Electro-Mechanical%20Full%20Heart%20Model&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Morany,%20Adi&rft.date=2021-01-01&rft.volume=49&rft.issue=1&rft.spage=441&rft.epage=454&rft.pages=441-454&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-020-02575-0&rft_dat=%3Cproquest_pubme%3E2473886767%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-96ca05b3881b9ba5795a1ca1c9ec5de7ff276a021a9e2b10b0c4ffc9c38fe08f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473886767&rft_id=info:pmid/32705423&rfr_iscdi=true