Loading…

Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles

This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2020-12, Vol.13 (1), p.57
Main Authors: Aparicio-Collado, José Luis, Novoa, Juan José, Molina-Mateo, José, Torregrosa-Cabanilles, Constantino, Serrano-Aroca, Ángel, Sabater I Serra, Roser
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83
cites cdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83
container_end_page
container_issue 1
container_start_page 57
container_title Polymers
container_volume 13
creator Aparicio-Collado, José Luis
Novoa, Juan José
Molina-Mateo, José
Torregrosa-Cabanilles, Constantino
Serrano-Aroca, Ángel
Sabater I Serra, Roser
description This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.
doi_str_mv 10.3390/polym13010057
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473903807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</originalsourceid><addsrcrecordid>eNpdkk1v3CAQQFHVqom2OfZaIfWyOTgBY4x9qRSt0malaFupH1cL46HrFIMLeFP_ov7N2LvpKikX0PD0hmEGobeUXDBWksvembGjjFBCuHiBTlMiWJKxnLx8cj5BZyHckWllPM-peI1OGGOCizQ_RX83bgcGf4WuTdY2gu_BQvQyQoO_zHbweAPx3vlfATu9jy1ZcjM23v0Z6yGOM5solxyDO2lgDp5fzjBe_mjtaPCVUW7rzDm-b-MWr61yvneHPCtnm0HFdgd7fT967wzgjbSulz62ykB4g15paQKcPe4L9P3j9bfVTXL7-dN6dXWbqIzymEjGJaOZLqkmNZONyjVIpos6pbTgteZplnOdy5JIVhBJS91oneapUHXNmCrYAn04ePuh7qBRYKfPMFXv2076sXKyrZ7f2HZb_XS7SoiSC8omwfJR4N3vAUKsujYoMEZacEOo0kxMnZuSiwl9_x965wZvp_L2FC-LcjIuUHKglHcheNDHx1BSzVNQPZuCiX_3tIIj_a_n7AFlCLNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473598971</pqid></control><display><type>article</type><title>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><creator>Aparicio-Collado, José Luis ; Novoa, Juan José ; Molina-Mateo, José ; Torregrosa-Cabanilles, Constantino ; Serrano-Aroca, Ángel ; Sabater I Serra, Roser</creator><creatorcontrib>Aparicio-Collado, José Luis ; Novoa, Juan José ; Molina-Mateo, José ; Torregrosa-Cabanilles, Constantino ; Serrano-Aroca, Ángel ; Sabater I Serra, Roser</creatorcontrib><description>This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13010057</identifier><identifier>PMID: 33375726</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alcohol ; Antimicrobial agents ; Biocompatibility ; Biomedical materials ; Chloroform ; Crosslinking ; Electrical resistivity ; Fourier transforms ; Glass transition ; Glutaraldehyde ; Hydrogels ; Interpenetrating networks ; Low concentrations ; Mechanical properties ; Miscibility ; Molecular interactions ; Molecular weight ; Nanoparticles ; Networks ; Phase separation ; Physical properties ; Polymers ; Polypyrroles ; Thermal stability ; Thermodynamic properties ; Tissue engineering ; Wettability</subject><ispartof>Polymers, 2020-12, Vol.13 (1), p.57</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</citedby><cites>FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</cites><orcidid>0000-0002-2786-3549 ; 0000-0002-5550-7066 ; 0000-0002-9953-3848 ; 0000-0002-0531-9876 ; 0000-0003-0874-9131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473598971/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473598971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33375726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aparicio-Collado, José Luis</creatorcontrib><creatorcontrib>Novoa, Juan José</creatorcontrib><creatorcontrib>Molina-Mateo, José</creatorcontrib><creatorcontrib>Torregrosa-Cabanilles, Constantino</creatorcontrib><creatorcontrib>Serrano-Aroca, Ángel</creatorcontrib><creatorcontrib>Sabater I Serra, Roser</creatorcontrib><title>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.</description><subject>Alcohol</subject><subject>Antimicrobial agents</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chloroform</subject><subject>Crosslinking</subject><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>Glass transition</subject><subject>Glutaraldehyde</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>Low concentrations</subject><subject>Mechanical properties</subject><subject>Miscibility</subject><subject>Molecular interactions</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Networks</subject><subject>Phase separation</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Tissue engineering</subject><subject>Wettability</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkk1v3CAQQFHVqom2OfZaIfWyOTgBY4x9qRSt0malaFupH1cL46HrFIMLeFP_ov7N2LvpKikX0PD0hmEGobeUXDBWksvembGjjFBCuHiBTlMiWJKxnLx8cj5BZyHckWllPM-peI1OGGOCizQ_RX83bgcGf4WuTdY2gu_BQvQyQoO_zHbweAPx3vlfATu9jy1ZcjM23v0Z6yGOM5solxyDO2lgDp5fzjBe_mjtaPCVUW7rzDm-b-MWr61yvneHPCtnm0HFdgd7fT967wzgjbSulz62ykB4g15paQKcPe4L9P3j9bfVTXL7-dN6dXWbqIzymEjGJaOZLqkmNZONyjVIpos6pbTgteZplnOdy5JIVhBJS91oneapUHXNmCrYAn04ePuh7qBRYKfPMFXv2076sXKyrZ7f2HZb_XS7SoiSC8omwfJR4N3vAUKsujYoMEZacEOo0kxMnZuSiwl9_x965wZvp_L2FC-LcjIuUHKglHcheNDHx1BSzVNQPZuCiX_3tIIj_a_n7AFlCLNQ</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Aparicio-Collado, José Luis</creator><creator>Novoa, Juan José</creator><creator>Molina-Mateo, José</creator><creator>Torregrosa-Cabanilles, Constantino</creator><creator>Serrano-Aroca, Ángel</creator><creator>Sabater I Serra, Roser</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2786-3549</orcidid><orcidid>https://orcid.org/0000-0002-5550-7066</orcidid><orcidid>https://orcid.org/0000-0002-9953-3848</orcidid><orcidid>https://orcid.org/0000-0002-0531-9876</orcidid><orcidid>https://orcid.org/0000-0003-0874-9131</orcidid></search><sort><creationdate>20201225</creationdate><title>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</title><author>Aparicio-Collado, José Luis ; Novoa, Juan José ; Molina-Mateo, José ; Torregrosa-Cabanilles, Constantino ; Serrano-Aroca, Ángel ; Sabater I Serra, Roser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol</topic><topic>Antimicrobial agents</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chloroform</topic><topic>Crosslinking</topic><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>Glass transition</topic><topic>Glutaraldehyde</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>Low concentrations</topic><topic>Mechanical properties</topic><topic>Miscibility</topic><topic>Molecular interactions</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Networks</topic><topic>Phase separation</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Tissue engineering</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparicio-Collado, José Luis</creatorcontrib><creatorcontrib>Novoa, Juan José</creatorcontrib><creatorcontrib>Molina-Mateo, José</creatorcontrib><creatorcontrib>Torregrosa-Cabanilles, Constantino</creatorcontrib><creatorcontrib>Serrano-Aroca, Ángel</creatorcontrib><creatorcontrib>Sabater I Serra, Roser</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparicio-Collado, José Luis</au><au>Novoa, Juan José</au><au>Molina-Mateo, José</au><au>Torregrosa-Cabanilles, Constantino</au><au>Serrano-Aroca, Ángel</au><au>Sabater I Serra, Roser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>57</spage><pages>57-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33375726</pmid><doi>10.3390/polym13010057</doi><orcidid>https://orcid.org/0000-0002-2786-3549</orcidid><orcidid>https://orcid.org/0000-0002-5550-7066</orcidid><orcidid>https://orcid.org/0000-0002-9953-3848</orcidid><orcidid>https://orcid.org/0000-0002-0531-9876</orcidid><orcidid>https://orcid.org/0000-0003-0874-9131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2020-12, Vol.13 (1), p.57
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795713
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费)
subjects Alcohol
Antimicrobial agents
Biocompatibility
Biomedical materials
Chloroform
Crosslinking
Electrical resistivity
Fourier transforms
Glass transition
Glutaraldehyde
Hydrogels
Interpenetrating networks
Low concentrations
Mechanical properties
Miscibility
Molecular interactions
Molecular weight
Nanoparticles
Networks
Phase separation
Physical properties
Polymers
Polypyrroles
Thermal stability
Thermodynamic properties
Tissue engineering
Wettability
title Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Semi-Interpenetrated%20Polymer%20Networks%20of%20Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly%20(Vinyl%20Alcohol)%20with%20Incorporated%20Conductive%20Polypyrrole%20Nanoparticles&rft.jtitle=Polymers&rft.au=Aparicio-Collado,%20Jos%C3%A9%20Luis&rft.date=2020-12-25&rft.volume=13&rft.issue=1&rft.spage=57&rft.pages=57-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13010057&rft_dat=%3Cproquest_pubme%3E2473903807%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473598971&rft_id=info:pmid/33375726&rfr_iscdi=true