Loading…
Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels...
Saved in:
Published in: | Polymers 2020-12, Vol.13 (1), p.57 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83 |
container_end_page | |
container_issue | 1 |
container_start_page | 57 |
container_title | Polymers |
container_volume | 13 |
creator | Aparicio-Collado, José Luis Novoa, Juan José Molina-Mateo, José Torregrosa-Cabanilles, Constantino Serrano-Aroca, Ángel Sabater I Serra, Roser |
description | This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems. |
doi_str_mv | 10.3390/polym13010057 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473903807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</originalsourceid><addsrcrecordid>eNpdkk1v3CAQQFHVqom2OfZaIfWyOTgBY4x9qRSt0malaFupH1cL46HrFIMLeFP_ov7N2LvpKikX0PD0hmEGobeUXDBWksvembGjjFBCuHiBTlMiWJKxnLx8cj5BZyHckWllPM-peI1OGGOCizQ_RX83bgcGf4WuTdY2gu_BQvQyQoO_zHbweAPx3vlfATu9jy1ZcjM23v0Z6yGOM5solxyDO2lgDp5fzjBe_mjtaPCVUW7rzDm-b-MWr61yvneHPCtnm0HFdgd7fT967wzgjbSulz62ykB4g15paQKcPe4L9P3j9bfVTXL7-dN6dXWbqIzymEjGJaOZLqkmNZONyjVIpos6pbTgteZplnOdy5JIVhBJS91oneapUHXNmCrYAn04ePuh7qBRYKfPMFXv2076sXKyrZ7f2HZb_XS7SoiSC8omwfJR4N3vAUKsujYoMEZacEOo0kxMnZuSiwl9_x965wZvp_L2FC-LcjIuUHKglHcheNDHx1BSzVNQPZuCiX_3tIIj_a_n7AFlCLNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473598971</pqid></control><display><type>article</type><title>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><creator>Aparicio-Collado, José Luis ; Novoa, Juan José ; Molina-Mateo, José ; Torregrosa-Cabanilles, Constantino ; Serrano-Aroca, Ángel ; Sabater I Serra, Roser</creator><creatorcontrib>Aparicio-Collado, José Luis ; Novoa, Juan José ; Molina-Mateo, José ; Torregrosa-Cabanilles, Constantino ; Serrano-Aroca, Ángel ; Sabater I Serra, Roser</creatorcontrib><description>This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13010057</identifier><identifier>PMID: 33375726</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alcohol ; Antimicrobial agents ; Biocompatibility ; Biomedical materials ; Chloroform ; Crosslinking ; Electrical resistivity ; Fourier transforms ; Glass transition ; Glutaraldehyde ; Hydrogels ; Interpenetrating networks ; Low concentrations ; Mechanical properties ; Miscibility ; Molecular interactions ; Molecular weight ; Nanoparticles ; Networks ; Phase separation ; Physical properties ; Polymers ; Polypyrroles ; Thermal stability ; Thermodynamic properties ; Tissue engineering ; Wettability</subject><ispartof>Polymers, 2020-12, Vol.13 (1), p.57</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</citedby><cites>FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</cites><orcidid>0000-0002-2786-3549 ; 0000-0002-5550-7066 ; 0000-0002-9953-3848 ; 0000-0002-0531-9876 ; 0000-0003-0874-9131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473598971/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473598971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33375726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aparicio-Collado, José Luis</creatorcontrib><creatorcontrib>Novoa, Juan José</creatorcontrib><creatorcontrib>Molina-Mateo, José</creatorcontrib><creatorcontrib>Torregrosa-Cabanilles, Constantino</creatorcontrib><creatorcontrib>Serrano-Aroca, Ángel</creatorcontrib><creatorcontrib>Sabater I Serra, Roser</creatorcontrib><title>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.</description><subject>Alcohol</subject><subject>Antimicrobial agents</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chloroform</subject><subject>Crosslinking</subject><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>Glass transition</subject><subject>Glutaraldehyde</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>Low concentrations</subject><subject>Mechanical properties</subject><subject>Miscibility</subject><subject>Molecular interactions</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Networks</subject><subject>Phase separation</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Tissue engineering</subject><subject>Wettability</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkk1v3CAQQFHVqom2OfZaIfWyOTgBY4x9qRSt0malaFupH1cL46HrFIMLeFP_ov7N2LvpKikX0PD0hmEGobeUXDBWksvembGjjFBCuHiBTlMiWJKxnLx8cj5BZyHckWllPM-peI1OGGOCizQ_RX83bgcGf4WuTdY2gu_BQvQyQoO_zHbweAPx3vlfATu9jy1ZcjM23v0Z6yGOM5solxyDO2lgDp5fzjBe_mjtaPCVUW7rzDm-b-MWr61yvneHPCtnm0HFdgd7fT967wzgjbSulz62ykB4g15paQKcPe4L9P3j9bfVTXL7-dN6dXWbqIzymEjGJaOZLqkmNZONyjVIpos6pbTgteZplnOdy5JIVhBJS91oneapUHXNmCrYAn04ePuh7qBRYKfPMFXv2076sXKyrZ7f2HZb_XS7SoiSC8omwfJR4N3vAUKsujYoMEZacEOo0kxMnZuSiwl9_x965wZvp_L2FC-LcjIuUHKglHcheNDHx1BSzVNQPZuCiX_3tIIj_a_n7AFlCLNQ</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Aparicio-Collado, José Luis</creator><creator>Novoa, Juan José</creator><creator>Molina-Mateo, José</creator><creator>Torregrosa-Cabanilles, Constantino</creator><creator>Serrano-Aroca, Ángel</creator><creator>Sabater I Serra, Roser</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2786-3549</orcidid><orcidid>https://orcid.org/0000-0002-5550-7066</orcidid><orcidid>https://orcid.org/0000-0002-9953-3848</orcidid><orcidid>https://orcid.org/0000-0002-0531-9876</orcidid><orcidid>https://orcid.org/0000-0003-0874-9131</orcidid></search><sort><creationdate>20201225</creationdate><title>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</title><author>Aparicio-Collado, José Luis ; Novoa, Juan José ; Molina-Mateo, José ; Torregrosa-Cabanilles, Constantino ; Serrano-Aroca, Ángel ; Sabater I Serra, Roser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol</topic><topic>Antimicrobial agents</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chloroform</topic><topic>Crosslinking</topic><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>Glass transition</topic><topic>Glutaraldehyde</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>Low concentrations</topic><topic>Mechanical properties</topic><topic>Miscibility</topic><topic>Molecular interactions</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Networks</topic><topic>Phase separation</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Tissue engineering</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparicio-Collado, José Luis</creatorcontrib><creatorcontrib>Novoa, Juan José</creatorcontrib><creatorcontrib>Molina-Mateo, José</creatorcontrib><creatorcontrib>Torregrosa-Cabanilles, Constantino</creatorcontrib><creatorcontrib>Serrano-Aroca, Ángel</creatorcontrib><creatorcontrib>Sabater I Serra, Roser</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparicio-Collado, José Luis</au><au>Novoa, Juan José</au><au>Molina-Mateo, José</au><au>Torregrosa-Cabanilles, Constantino</au><au>Serrano-Aroca, Ángel</au><au>Sabater I Serra, Roser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>57</spage><pages>57-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33375726</pmid><doi>10.3390/polym13010057</doi><orcidid>https://orcid.org/0000-0002-2786-3549</orcidid><orcidid>https://orcid.org/0000-0002-5550-7066</orcidid><orcidid>https://orcid.org/0000-0002-9953-3848</orcidid><orcidid>https://orcid.org/0000-0002-0531-9876</orcidid><orcidid>https://orcid.org/0000-0003-0874-9131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2020-12, Vol.13 (1), p.57 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795713 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费) |
subjects | Alcohol Antimicrobial agents Biocompatibility Biomedical materials Chloroform Crosslinking Electrical resistivity Fourier transforms Glass transition Glutaraldehyde Hydrogels Interpenetrating networks Low concentrations Mechanical properties Miscibility Molecular interactions Molecular weight Nanoparticles Networks Phase separation Physical properties Polymers Polypyrroles Thermal stability Thermodynamic properties Tissue engineering Wettability |
title | Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Semi-Interpenetrated%20Polymer%20Networks%20of%20Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly%20(Vinyl%20Alcohol)%20with%20Incorporated%20Conductive%20Polypyrrole%20Nanoparticles&rft.jtitle=Polymers&rft.au=Aparicio-Collado,%20Jos%C3%A9%20Luis&rft.date=2020-12-25&rft.volume=13&rft.issue=1&rft.spage=57&rft.pages=57-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13010057&rft_dat=%3Cproquest_pubme%3E2473903807%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-a35a314f91f0b3adc6fea3f8b21185bf52465f6a90a380a19fdff2627cbb33c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473598971&rft_id=info:pmid/33375726&rfr_iscdi=true |