Loading…
Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring Tandem Ionization mass spectrometry
This study examines the information potential of comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF MS) and variable ionization energy (i.e., Tandem Ionization™) to study changes in saliva metabolic signatures from a small group of obese indivi...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2021-01, Vol.413 (2), p.403-418 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3 |
container_end_page | 418 |
container_issue | 2 |
container_start_page | 403 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 413 |
creator | Cialiè Rosso, Marta Stilo, Federico Squara, Simone Liberto, Erica Mai, Stefania Mele, Chiara Marzullo, Paolo Aimaretti, Gianluca Reichenbach, Stephen E. Collino, Massimo Bicchi, Carlo Cordero, Chiara |
description | This study examines the information potential of comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF MS) and variable ionization energy (i.e., Tandem Ionization™) to study changes in saliva metabolic signatures from a small group of obese individuals. The study presents a proof of concept for an effective exploitation of the complementary nature of tandem ionization data. Samples are taken from two sub-populations of severely obese (BMI > 40 kg/m
2
) patients, named metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO). Untargeted fingerprinting, based on pattern recognition by template matching, is applied on single data streams and on fused data, obtained by combining raw signals from the two ionization energies (12 and 70 eV). Results indicate that at lower energy (i.e., 12 eV), the total signal intensity is one order of magnitude lower compared to the reference signal at 70 eV, but the ranges of variations for 2D peak responses is larger, extending the dynamic range. Fused data combine benefits from 70 eV and 12 eV resulting in more comprehensive coverage by sample fingerprints. Multivariate statistics, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) show quite good patient clustering, with total explained variance by the first two principal components (PCs) that increases from 54% at 70 eV to 59% at 12 eV and up to 71% for fused data. With PLS-DA, discriminant components are highlighted and putatively identified by comparing retention data and 70 eV spectral signatures. Within the most informative analytes, lactose is present in higher relative amount in saliva from MHO patients, whereas N-acetyl-D-glucosamine, urea, glucuronic acid γ-lactone, 2-deoxyribose, N-acetylneuraminic acid methyl ester, and 5-aminovaleric acid are more abundant in MUO patients. Visual feature fingerprinting is combined with pattern recognition algorithms to highlight metabolite variations between composite per-class images obtained by combining raw data from individuals belonging to different classes, i.e., MUO vs. MHO.
Graphical abstract |
doi_str_mv | 10.1007/s00216-020-03008-6 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7806578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650846623</galeid><sourcerecordid>A650846623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoqXwAiyQJTZsUvyTxJ4NUlUVqFSJTVlbjnMz48qJg-0MHR6WZ-GGaacUIeSFnficz_denaJ4zegpo1S-T5Ry1pSU05IKSlXZPCmOWcNUyZuaPj2cK35UvEjphlJWK9Y8L46EYBVlXB4XPy9uJx-iG9cEbnM0pHMDjMmFMZEciDVTniOQZLzbGjJANm3wLgPp0QJxQmdOpI9hOFxa4_2ObMD4vNkRM3ZkHu-_QgsJyGSyg8XX7ogNwxRhs7y5BZK_h_JQgfFkbRKxG6SbHNbRTIjowWBJS8HXyIaBXIbR_UBiGMlgUiJpApvRAjnuXhbPeuMTvLrbT4qvHy-uzz-XV18-XZ6fXZW2liqXvVGSN7Rb8VauhLJdy1m3qlo8GKGg6mpjW1CybgRqqOKVbau-W4GQIOrOipPiw547ze0AncXuovEaxzOYuNPBOP34ZnQbvQ5bLRVtsAQEvLsDxPBthpT14JIF780IYU6aV7UUlFElUPr2L-lNmCNOa1FJKVRNmXxQrY0H7cY-4Lt2geozTIeqmoYvrNN_qHDhYJ0NI_QO_z8y8L3BxpBShP7QI6N6SaXep1JjKvXvVOoGTW_-nM7Bch9DFIi9IC2Bwlw9tPQf7C-lmvW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477385017</pqid></control><display><type>article</type><title>Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring Tandem Ionization mass spectrometry</title><source>Springer Link</source><creator>Cialiè Rosso, Marta ; Stilo, Federico ; Squara, Simone ; Liberto, Erica ; Mai, Stefania ; Mele, Chiara ; Marzullo, Paolo ; Aimaretti, Gianluca ; Reichenbach, Stephen E. ; Collino, Massimo ; Bicchi, Carlo ; Cordero, Chiara</creator><creatorcontrib>Cialiè Rosso, Marta ; Stilo, Federico ; Squara, Simone ; Liberto, Erica ; Mai, Stefania ; Mele, Chiara ; Marzullo, Paolo ; Aimaretti, Gianluca ; Reichenbach, Stephen E. ; Collino, Massimo ; Bicchi, Carlo ; Cordero, Chiara</creatorcontrib><description>This study examines the information potential of comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF MS) and variable ionization energy (i.e., Tandem Ionization™) to study changes in saliva metabolic signatures from a small group of obese individuals. The study presents a proof of concept for an effective exploitation of the complementary nature of tandem ionization data. Samples are taken from two sub-populations of severely obese (BMI > 40 kg/m
2
) patients, named metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO). Untargeted fingerprinting, based on pattern recognition by template matching, is applied on single data streams and on fused data, obtained by combining raw signals from the two ionization energies (12 and 70 eV). Results indicate that at lower energy (i.e., 12 eV), the total signal intensity is one order of magnitude lower compared to the reference signal at 70 eV, but the ranges of variations for 2D peak responses is larger, extending the dynamic range. Fused data combine benefits from 70 eV and 12 eV resulting in more comprehensive coverage by sample fingerprints. Multivariate statistics, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) show quite good patient clustering, with total explained variance by the first two principal components (PCs) that increases from 54% at 70 eV to 59% at 12 eV and up to 71% for fused data. With PLS-DA, discriminant components are highlighted and putatively identified by comparing retention data and 70 eV spectral signatures. Within the most informative analytes, lactose is present in higher relative amount in saliva from MHO patients, whereas N-acetyl-D-glucosamine, urea, glucuronic acid γ-lactone, 2-deoxyribose, N-acetylneuraminic acid methyl ester, and 5-aminovaleric acid are more abundant in MUO patients. Visual feature fingerprinting is combined with pattern recognition algorithms to highlight metabolite variations between composite per-class images obtained by combining raw data from individuals belonging to different classes, i.e., MUO vs. MHO.
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-020-03008-6</identifier><identifier>PMID: 33140127</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Clustering ; Data integration ; Data transmission ; Discriminant analysis ; Fingerprinting ; Fingerprints ; Food Science ; Gas chromatography ; Glucosamine ; Ionization ; Laboratory Medicine ; Lactose ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Methods ; Monitoring/Environmental Analysis ; Multivariate analysis ; N-Acetylglucosamine ; N-Acetylneuraminic acid ; Obesity ; Object recognition ; Pattern recognition ; Physiological aspects ; Principal components analysis ; Reference signals ; Research Paper ; Saliva ; Salivary glands ; Scientific imaging ; secretions ; Spectral signatures ; Spectroscopy ; Statistical analysis ; Statistical methods ; Template matching ; Urea</subject><ispartof>Analytical and bioanalytical chemistry, 2021-01, Vol.413 (2), p.403-418</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3</citedby><cites>FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33140127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cialiè Rosso, Marta</creatorcontrib><creatorcontrib>Stilo, Federico</creatorcontrib><creatorcontrib>Squara, Simone</creatorcontrib><creatorcontrib>Liberto, Erica</creatorcontrib><creatorcontrib>Mai, Stefania</creatorcontrib><creatorcontrib>Mele, Chiara</creatorcontrib><creatorcontrib>Marzullo, Paolo</creatorcontrib><creatorcontrib>Aimaretti, Gianluca</creatorcontrib><creatorcontrib>Reichenbach, Stephen E.</creatorcontrib><creatorcontrib>Collino, Massimo</creatorcontrib><creatorcontrib>Bicchi, Carlo</creatorcontrib><creatorcontrib>Cordero, Chiara</creatorcontrib><title>Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring Tandem Ionization mass spectrometry</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>This study examines the information potential of comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF MS) and variable ionization energy (i.e., Tandem Ionization™) to study changes in saliva metabolic signatures from a small group of obese individuals. The study presents a proof of concept for an effective exploitation of the complementary nature of tandem ionization data. Samples are taken from two sub-populations of severely obese (BMI > 40 kg/m
2
) patients, named metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO). Untargeted fingerprinting, based on pattern recognition by template matching, is applied on single data streams and on fused data, obtained by combining raw signals from the two ionization energies (12 and 70 eV). Results indicate that at lower energy (i.e., 12 eV), the total signal intensity is one order of magnitude lower compared to the reference signal at 70 eV, but the ranges of variations for 2D peak responses is larger, extending the dynamic range. Fused data combine benefits from 70 eV and 12 eV resulting in more comprehensive coverage by sample fingerprints. Multivariate statistics, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) show quite good patient clustering, with total explained variance by the first two principal components (PCs) that increases from 54% at 70 eV to 59% at 12 eV and up to 71% for fused data. With PLS-DA, discriminant components are highlighted and putatively identified by comparing retention data and 70 eV spectral signatures. Within the most informative analytes, lactose is present in higher relative amount in saliva from MHO patients, whereas N-acetyl-D-glucosamine, urea, glucuronic acid γ-lactone, 2-deoxyribose, N-acetylneuraminic acid methyl ester, and 5-aminovaleric acid are more abundant in MUO patients. Visual feature fingerprinting is combined with pattern recognition algorithms to highlight metabolite variations between composite per-class images obtained by combining raw data from individuals belonging to different classes, i.e., MUO vs. MHO.
Graphical abstract</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Clustering</subject><subject>Data integration</subject><subject>Data transmission</subject><subject>Discriminant analysis</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Food Science</subject><subject>Gas chromatography</subject><subject>Glucosamine</subject><subject>Ionization</subject><subject>Laboratory Medicine</subject><subject>Lactose</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multivariate analysis</subject><subject>N-Acetylglucosamine</subject><subject>N-Acetylneuraminic acid</subject><subject>Obesity</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Physiological aspects</subject><subject>Principal components analysis</subject><subject>Reference signals</subject><subject>Research Paper</subject><subject>Saliva</subject><subject>Salivary glands</subject><subject>Scientific imaging</subject><subject>secretions</subject><subject>Spectral signatures</subject><subject>Spectroscopy</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Template matching</subject><subject>Urea</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ks1u1DAUhSMEoqXwAiyQJTZsUvyTxJ4NUlUVqFSJTVlbjnMz48qJg-0MHR6WZ-GGaacUIeSFnficz_denaJ4zegpo1S-T5Ry1pSU05IKSlXZPCmOWcNUyZuaPj2cK35UvEjphlJWK9Y8L46EYBVlXB4XPy9uJx-iG9cEbnM0pHMDjMmFMZEciDVTniOQZLzbGjJANm3wLgPp0QJxQmdOpI9hOFxa4_2ObMD4vNkRM3ZkHu-_QgsJyGSyg8XX7ogNwxRhs7y5BZK_h_JQgfFkbRKxG6SbHNbRTIjowWBJS8HXyIaBXIbR_UBiGMlgUiJpApvRAjnuXhbPeuMTvLrbT4qvHy-uzz-XV18-XZ6fXZW2liqXvVGSN7Rb8VauhLJdy1m3qlo8GKGg6mpjW1CybgRqqOKVbau-W4GQIOrOipPiw547ze0AncXuovEaxzOYuNPBOP34ZnQbvQ5bLRVtsAQEvLsDxPBthpT14JIF780IYU6aV7UUlFElUPr2L-lNmCNOa1FJKVRNmXxQrY0H7cY-4Lt2geozTIeqmoYvrNN_qHDhYJ0NI_QO_z8y8L3BxpBShP7QI6N6SaXep1JjKvXvVOoGTW_-nM7Bch9DFIi9IC2Bwlw9tPQf7C-lmvW4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Cialiè Rosso, Marta</creator><creator>Stilo, Federico</creator><creator>Squara, Simone</creator><creator>Liberto, Erica</creator><creator>Mai, Stefania</creator><creator>Mele, Chiara</creator><creator>Marzullo, Paolo</creator><creator>Aimaretti, Gianluca</creator><creator>Reichenbach, Stephen E.</creator><creator>Collino, Massimo</creator><creator>Bicchi, Carlo</creator><creator>Cordero, Chiara</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring Tandem Ionization mass spectrometry</title><author>Cialiè Rosso, Marta ; Stilo, Federico ; Squara, Simone ; Liberto, Erica ; Mai, Stefania ; Mele, Chiara ; Marzullo, Paolo ; Aimaretti, Gianluca ; Reichenbach, Stephen E. ; Collino, Massimo ; Bicchi, Carlo ; Cordero, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Clustering</topic><topic>Data integration</topic><topic>Data transmission</topic><topic>Discriminant analysis</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Food Science</topic><topic>Gas chromatography</topic><topic>Glucosamine</topic><topic>Ionization</topic><topic>Laboratory Medicine</topic><topic>Lactose</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multivariate analysis</topic><topic>N-Acetylglucosamine</topic><topic>N-Acetylneuraminic acid</topic><topic>Obesity</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Physiological aspects</topic><topic>Principal components analysis</topic><topic>Reference signals</topic><topic>Research Paper</topic><topic>Saliva</topic><topic>Salivary glands</topic><topic>Scientific imaging</topic><topic>secretions</topic><topic>Spectral signatures</topic><topic>Spectroscopy</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Template matching</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cialiè Rosso, Marta</creatorcontrib><creatorcontrib>Stilo, Federico</creatorcontrib><creatorcontrib>Squara, Simone</creatorcontrib><creatorcontrib>Liberto, Erica</creatorcontrib><creatorcontrib>Mai, Stefania</creatorcontrib><creatorcontrib>Mele, Chiara</creatorcontrib><creatorcontrib>Marzullo, Paolo</creatorcontrib><creatorcontrib>Aimaretti, Gianluca</creatorcontrib><creatorcontrib>Reichenbach, Stephen E.</creatorcontrib><creatorcontrib>Collino, Massimo</creatorcontrib><creatorcontrib>Bicchi, Carlo</creatorcontrib><creatorcontrib>Cordero, Chiara</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cialiè Rosso, Marta</au><au>Stilo, Federico</au><au>Squara, Simone</au><au>Liberto, Erica</au><au>Mai, Stefania</au><au>Mele, Chiara</au><au>Marzullo, Paolo</au><au>Aimaretti, Gianluca</au><au>Reichenbach, Stephen E.</au><au>Collino, Massimo</au><au>Bicchi, Carlo</au><au>Cordero, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring Tandem Ionization mass spectrometry</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>413</volume><issue>2</issue><spage>403</spage><epage>418</epage><pages>403-418</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>This study examines the information potential of comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF MS) and variable ionization energy (i.e., Tandem Ionization™) to study changes in saliva metabolic signatures from a small group of obese individuals. The study presents a proof of concept for an effective exploitation of the complementary nature of tandem ionization data. Samples are taken from two sub-populations of severely obese (BMI > 40 kg/m
2
) patients, named metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO). Untargeted fingerprinting, based on pattern recognition by template matching, is applied on single data streams and on fused data, obtained by combining raw signals from the two ionization energies (12 and 70 eV). Results indicate that at lower energy (i.e., 12 eV), the total signal intensity is one order of magnitude lower compared to the reference signal at 70 eV, but the ranges of variations for 2D peak responses is larger, extending the dynamic range. Fused data combine benefits from 70 eV and 12 eV resulting in more comprehensive coverage by sample fingerprints. Multivariate statistics, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) show quite good patient clustering, with total explained variance by the first two principal components (PCs) that increases from 54% at 70 eV to 59% at 12 eV and up to 71% for fused data. With PLS-DA, discriminant components are highlighted and putatively identified by comparing retention data and 70 eV spectral signatures. Within the most informative analytes, lactose is present in higher relative amount in saliva from MHO patients, whereas N-acetyl-D-glucosamine, urea, glucuronic acid γ-lactone, 2-deoxyribose, N-acetylneuraminic acid methyl ester, and 5-aminovaleric acid are more abundant in MUO patients. Visual feature fingerprinting is combined with pattern recognition algorithms to highlight metabolite variations between composite per-class images obtained by combining raw data from individuals belonging to different classes, i.e., MUO vs. MHO.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33140127</pmid><doi>10.1007/s00216-020-03008-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2021-01, Vol.413 (2), p.403-418 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7806578 |
source | Springer Link |
subjects | Algorithms Analysis Analytical Chemistry Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chromatography Clustering Data integration Data transmission Discriminant analysis Fingerprinting Fingerprints Food Science Gas chromatography Glucosamine Ionization Laboratory Medicine Lactose Mass spectrometry Mass spectroscopy Metabolites Methods Monitoring/Environmental Analysis Multivariate analysis N-Acetylglucosamine N-Acetylneuraminic acid Obesity Object recognition Pattern recognition Physiological aspects Principal components analysis Reference signals Research Paper Saliva Salivary glands Scientific imaging secretions Spectral signatures Spectroscopy Statistical analysis Statistical methods Template matching Urea |
title | Exploring extra dimensions to capture saliva metabolite fingerprints from metabolically healthy and unhealthy obese patients by comprehensive two-dimensional gas chromatography featuring Tandem Ionization mass spectrometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20extra%20dimensions%20to%20capture%20saliva%20metabolite%20fingerprints%20from%20metabolically%20healthy%20and%20unhealthy%20obese%20patients%20by%20comprehensive%20two-dimensional%20gas%20chromatography%20featuring%20Tandem%20Ionization%20mass%20spectrometry&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Ciali%C3%A8%20Rosso,%20Marta&rft.date=2021-01-01&rft.volume=413&rft.issue=2&rft.spage=403&rft.epage=418&rft.pages=403-418&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-020-03008-6&rft_dat=%3Cgale_pubme%3EA650846623%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-fa87260d92b7938cdb21d94bcdba38e4d5acbe87563d920824cb4fd9e37e35dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477385017&rft_id=info:pmid/33140127&rft_galeid=A650846623&rfr_iscdi=true |