Loading…
Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury
Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important method to identify significant processes...
Saved in:
Published in: | BioMed research international 2021, Vol.2021 (1), p.8834578-8834578 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743 |
container_end_page | 8834578 |
container_issue | 1 |
container_start_page | 8834578 |
container_title | BioMed research international |
container_volume | 2021 |
creator | Wang, Si-Yang Gao, Jie Song, Yu-huan Cai, Guang-Yan Chen, Xiang-Mei |
description | Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important method to identify significant processes of disease occurrence and development. In this study, we analyzed the public expression profile with bioinformatics analysis to identify differentially expressed genes (DEGs) in two types of common AKI models (ischemia-reperfusion injury and cisplatin). DEGs were predicted in four commonly used microRNA databases, and it was found that miR-466 and miR-709 may play important roles in AKI. Then, we found key nodes through protein-protein interaction (PPI) network analysis and subnetwork analysis. Finally, by detecting the expression levels in the renal tissues of the two established AKI models, we found that Myc, Mcm5, E2f1, Oip5, Mdm2, E2f8, miR-466, and miR-709 may be important genes and miRNAs in the process of AKI damage repair. The findings of our study reveal some candidate genes, miRNAs, and pathways potentially involved in the molecular mechanisms of AKI. These data improve the current understanding of AKI and provide new insight for AKI research and treatment. |
doi_str_mv | 10.1155/2021/8834578 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7810567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696727135</galeid><sourcerecordid>A696727135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743</originalsourceid><addsrcrecordid>eNp9kc1PFDEYhxsiEQLcPJtJvJjoQr8_LiQrUdiAYoycm27bgS6zLbYzmv3v6WSXFT3QS5v2ydP3fX8AvEHwGCHGTjDE6ERKQpmQO2AfE0QnHFH0ansmZA8clbKAdUnEoeKvwR4hDHJIxD64njkf-9AGa_qQYpPa5nvqxyvTNec--sZE13wNNqcf36bNp5CWJt_7XEZyaofeN5fBRb9qZnEx5NUh2G1NV_zRZj8AN18-_zy7mFxdn8_OplcTyyDtJ0IhY4UwmCsnjITEUqbc3FojlePQGuuM8pwLyg2c4znDFLfYWakQUVJQcgBO196HYb70ztaKs-n0Qw61vpVOJuh_X2K407fptxYSQcZFFbzfCHL6NfjS62Uo1nediT4NRWMqMeccS1LRd_-hizTkWNurlJCkzh6Jv9St6bwOsU31XztK9ZQrLrBAhL1MVRXFWI7UxzVVx15K9u22MQT1GLweg9eb4Cv-9vkwtvBTzBX4sAbuQnTmT3hZ9wiXs7Hi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478357817</pqid></control><display><type>article</type><title>Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wang, Si-Yang ; Gao, Jie ; Song, Yu-huan ; Cai, Guang-Yan ; Chen, Xiang-Mei</creator><contributor>Wei, Yong ; Yong Wei</contributor><creatorcontrib>Wang, Si-Yang ; Gao, Jie ; Song, Yu-huan ; Cai, Guang-Yan ; Chen, Xiang-Mei ; Wei, Yong ; Yong Wei</creatorcontrib><description>Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important method to identify significant processes of disease occurrence and development. In this study, we analyzed the public expression profile with bioinformatics analysis to identify differentially expressed genes (DEGs) in two types of common AKI models (ischemia-reperfusion injury and cisplatin). DEGs were predicted in four commonly used microRNA databases, and it was found that miR-466 and miR-709 may play important roles in AKI. Then, we found key nodes through protein-protein interaction (PPI) network analysis and subnetwork analysis. Finally, by detecting the expression levels in the renal tissues of the two established AKI models, we found that Myc, Mcm5, E2f1, Oip5, Mdm2, E2f8, miR-466, and miR-709 may be important genes and miRNAs in the process of AKI damage repair. The findings of our study reveal some candidate genes, miRNAs, and pathways potentially involved in the molecular mechanisms of AKI. These data improve the current understanding of AKI and provide new insight for AKI research and treatment.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2021/8834578</identifier><identifier>PMID: 33506037</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Acute renal failure ; Bioinformatics ; Biological markers ; Biomarkers ; Cisplatin ; Datasets ; Deoxyribonucleic acid ; Development and progression ; DNA ; Gene expression ; Genes ; Genetic aspects ; Health aspects ; Identification and classification ; Identification methods ; Injuries ; Ischemia ; Kidneys ; Laboratory animals ; MDM2 protein ; MicroRNA ; MicroRNAs ; miRNA ; Molecular modelling ; Myc protein ; Network analysis ; Pathogenesis ; Principal components analysis ; Protein interaction ; Protein-protein interactions ; Proteins ; Reperfusion ; Ribonucleic acid ; RNA ; Software ; Variance analysis</subject><ispartof>BioMed research international, 2021, Vol.2021 (1), p.8834578-8834578</ispartof><rights>Copyright © 2021 Si-Yang Wang et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Si-Yang Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Si-Yang Wang et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743</citedby><cites>FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743</cites><orcidid>0000-0002-7015-6196 ; 0000-0002-6932-8675 ; 0000-0002-4009-0800 ; 0000-0001-8586-6353 ; 0000-0001-8774-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2478357817/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2478357817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,4010,25734,27904,27905,27906,36993,36994,44571,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33506037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Yong</contributor><contributor>Yong Wei</contributor><creatorcontrib>Wang, Si-Yang</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Song, Yu-huan</creatorcontrib><creatorcontrib>Cai, Guang-Yan</creatorcontrib><creatorcontrib>Chen, Xiang-Mei</creatorcontrib><title>Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important method to identify significant processes of disease occurrence and development. In this study, we analyzed the public expression profile with bioinformatics analysis to identify differentially expressed genes (DEGs) in two types of common AKI models (ischemia-reperfusion injury and cisplatin). DEGs were predicted in four commonly used microRNA databases, and it was found that miR-466 and miR-709 may play important roles in AKI. Then, we found key nodes through protein-protein interaction (PPI) network analysis and subnetwork analysis. Finally, by detecting the expression levels in the renal tissues of the two established AKI models, we found that Myc, Mcm5, E2f1, Oip5, Mdm2, E2f8, miR-466, and miR-709 may be important genes and miRNAs in the process of AKI damage repair. The findings of our study reveal some candidate genes, miRNAs, and pathways potentially involved in the molecular mechanisms of AKI. These data improve the current understanding of AKI and provide new insight for AKI research and treatment.</description><subject>Acute renal failure</subject><subject>Bioinformatics</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Cisplatin</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Identification and classification</subject><subject>Identification methods</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Kidneys</subject><subject>Laboratory animals</subject><subject>MDM2 protein</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Molecular modelling</subject><subject>Myc protein</subject><subject>Network analysis</subject><subject>Pathogenesis</subject><subject>Principal components analysis</subject><subject>Protein interaction</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Reperfusion</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Software</subject><subject>Variance analysis</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc1PFDEYhxsiEQLcPJtJvJjoQr8_LiQrUdiAYoycm27bgS6zLbYzmv3v6WSXFT3QS5v2ydP3fX8AvEHwGCHGTjDE6ERKQpmQO2AfE0QnHFH0ansmZA8clbKAdUnEoeKvwR4hDHJIxD64njkf-9AGa_qQYpPa5nvqxyvTNec--sZE13wNNqcf36bNp5CWJt_7XEZyaofeN5fBRb9qZnEx5NUh2G1NV_zRZj8AN18-_zy7mFxdn8_OplcTyyDtJ0IhY4UwmCsnjITEUqbc3FojlePQGuuM8pwLyg2c4znDFLfYWakQUVJQcgBO196HYb70ztaKs-n0Qw61vpVOJuh_X2K407fptxYSQcZFFbzfCHL6NfjS62Uo1nediT4NRWMqMeccS1LRd_-hizTkWNurlJCkzh6Jv9St6bwOsU31XztK9ZQrLrBAhL1MVRXFWI7UxzVVx15K9u22MQT1GLweg9eb4Cv-9vkwtvBTzBX4sAbuQnTmT3hZ9wiXs7Hi</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Si-Yang</creator><creator>Gao, Jie</creator><creator>Song, Yu-huan</creator><creator>Cai, Guang-Yan</creator><creator>Chen, Xiang-Mei</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7015-6196</orcidid><orcidid>https://orcid.org/0000-0002-6932-8675</orcidid><orcidid>https://orcid.org/0000-0002-4009-0800</orcidid><orcidid>https://orcid.org/0000-0001-8586-6353</orcidid><orcidid>https://orcid.org/0000-0001-8774-6021</orcidid></search><sort><creationdate>2021</creationdate><title>Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury</title><author>Wang, Si-Yang ; Gao, Jie ; Song, Yu-huan ; Cai, Guang-Yan ; Chen, Xiang-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute renal failure</topic><topic>Bioinformatics</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Cisplatin</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Identification and classification</topic><topic>Identification methods</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Kidneys</topic><topic>Laboratory animals</topic><topic>MDM2 protein</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Molecular modelling</topic><topic>Myc protein</topic><topic>Network analysis</topic><topic>Pathogenesis</topic><topic>Principal components analysis</topic><topic>Protein interaction</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Reperfusion</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Software</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Si-Yang</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Song, Yu-huan</creatorcontrib><creatorcontrib>Cai, Guang-Yan</creatorcontrib><creatorcontrib>Chen, Xiang-Mei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Si-Yang</au><au>Gao, Jie</au><au>Song, Yu-huan</au><au>Cai, Guang-Yan</au><au>Chen, Xiang-Mei</au><au>Wei, Yong</au><au>Yong Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>8834578</spage><epage>8834578</epage><pages>8834578-8834578</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important method to identify significant processes of disease occurrence and development. In this study, we analyzed the public expression profile with bioinformatics analysis to identify differentially expressed genes (DEGs) in two types of common AKI models (ischemia-reperfusion injury and cisplatin). DEGs were predicted in four commonly used microRNA databases, and it was found that miR-466 and miR-709 may play important roles in AKI. Then, we found key nodes through protein-protein interaction (PPI) network analysis and subnetwork analysis. Finally, by detecting the expression levels in the renal tissues of the two established AKI models, we found that Myc, Mcm5, E2f1, Oip5, Mdm2, E2f8, miR-466, and miR-709 may be important genes and miRNAs in the process of AKI damage repair. The findings of our study reveal some candidate genes, miRNAs, and pathways potentially involved in the molecular mechanisms of AKI. These data improve the current understanding of AKI and provide new insight for AKI research and treatment.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33506037</pmid><doi>10.1155/2021/8834578</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7015-6196</orcidid><orcidid>https://orcid.org/0000-0002-6932-8675</orcidid><orcidid>https://orcid.org/0000-0002-4009-0800</orcidid><orcidid>https://orcid.org/0000-0001-8586-6353</orcidid><orcidid>https://orcid.org/0000-0001-8774-6021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2021, Vol.2021 (1), p.8834578-8834578 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7810567 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Acute renal failure Bioinformatics Biological markers Biomarkers Cisplatin Datasets Deoxyribonucleic acid Development and progression DNA Gene expression Genes Genetic aspects Health aspects Identification and classification Identification methods Injuries Ischemia Kidneys Laboratory animals MDM2 protein MicroRNA MicroRNAs miRNA Molecular modelling Myc protein Network analysis Pathogenesis Principal components analysis Protein interaction Protein-protein interactions Proteins Reperfusion Ribonucleic acid RNA Software Variance analysis |
title | Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Potential%20Gene%20and%20MicroRNA%20Biomarkers%20of%20Acute%20Kidney%20Injury&rft.jtitle=BioMed%20research%20international&rft.au=Wang,%20Si-Yang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=8834578&rft.epage=8834578&rft.pages=8834578-8834578&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2021/8834578&rft_dat=%3Cgale_pubme%3EA696727135%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-791ac77a269d7a803c459dbcca89d60cacda9e66746a0b2b5242f2dc891398743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478357817&rft_id=info:pmid/33506037&rft_galeid=A696727135&rfr_iscdi=true |