Loading…
Mobile device location data reveal human mobility response to state-level stay-at-home orders during the COVID-19 pandemic in the USA
One approach to delaying the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. Understanding the actual human mobility response to such policies remains a challenge owing to the lack of an observed and large-scale dataset describing human m...
Saved in:
Published in: | Journal of the Royal Society interface 2020-12, Vol.17 (173), p.20200344-20200344 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One approach to delaying the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. Understanding the actual human mobility response to such policies remains a challenge owing to the lack of an observed and large-scale dataset describing human mobility during the pandemic. This study uses an integrated dataset, consisting of anonymized and privacy-protected location data from over 150 million monthly active samples in the USA, COVID-19 case data and census population information, to uncover mobility changes during COVID-19 and under the stay-at-home state orders in the USA. The study successfully quantifies human mobility responses with three important metrics: daily average number of trips per person; daily average person-miles travelled; and daily percentage of residents staying at home. The data analytics reveal a spontaneous mobility reduction that occurred regardless of government actions and a 'floor' phenomenon, where human mobility reached a lower bound and stopped decreasing soon after each state announced the stay-at-home order. A set of longitudinal models is then developed and confirms that the states' stay-at-home policies have only led to about a 5% reduction in average daily human mobility. Lessons learned from the data analytics and longitudinal models offer valuable insights for government actions in preparation for another COVID-19 surge or another virus outbreak in the future. |
---|---|
ISSN: | 1742-5689 1742-5662 |
DOI: | 10.1098/rsif.2020.0344 |