Loading…

An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma

Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathema...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2017-06, Vol.77 (12), p.3336-3351
Main Authors: Silva, Ariosto, Silva, Maria C, Sudalagunta, Praneeth, Distler, Allison, Jacobson, Timothy, Collins, Aunshka, Nguyen, Tuan, Song, Jinming, Chen, Dung-Tsa, Chen, Lu, Cubitt, Christopher, Baz, Rachid, Perez, Lia, Rebatchouk, Dmitri, Dalton, William, Greene, James, Gatenby, Robert, Gillies, Robert, Sontag, Eduardo, Meads, Mark B, Shain, Kenneth H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53
cites cdi_FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53
container_end_page 3351
container_issue 12
container_start_page 3336
container_title Cancer research (Chicago, Ill.)
container_volume 77
creator Silva, Ariosto
Silva, Maria C
Sudalagunta, Praneeth
Distler, Allison
Jacobson, Timothy
Collins, Aunshka
Nguyen, Tuan
Song, Jinming
Chen, Dung-Tsa
Chen, Lu
Cubitt, Christopher
Baz, Rachid
Perez, Lia
Rebatchouk, Dmitri
Dalton, William
Greene, James
Gatenby, Robert
Gillies, Robert
Sontag, Eduardo
Meads, Mark B
Shain, Kenneth H
description Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson = 0.5658, < 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. .
doi_str_mv 10.1158/0008-5472.CAN-17-0502
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7819642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1887052757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53</originalsourceid><addsrcrecordid>eNpdkdFKHTEQhoO06NH6CJZAb3qzNtkkm-xN4XCwVdAqpe1tyGYnNZJNTpNd0bfvLurB9iZDmG9-ZvgQOqHklFKhPhFCVCW4rE83628VlRURpN5DKyqYqiTn4g1a7ZgDdFjK3fwVlIh9dFArTgiXYoWu1xGfPeBf_j7hm2BGl_KA5wePt4BvMvTejj5FnBzeBB-9NQF_h7JNsQD2EV9NYfTbAPjqEUIazDv01plQ4Pi5HqGfX85-bM6ry-uvF5v1ZWU5a8eq6WUL1kppLHDKeu6k6wQTrAXTta7retsyAj2tuekb6qw1AqzjjQQDzUweoc9PudupG6C3EMdsgt5mP5j8qJPx-t9O9Lf6d7rXUtG24fUc8PE5IKc_E5RRD75YCMFESFPRVClJRC2FnNEP_6F3acpxPk_TVjGmWtYslHiibE6lZHC7ZSjRizK96NCLDj0r01TqRdk89_71JbupF0fsL2PPk5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983389367</pqid></control><display><type>article</type><title>An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma</title><source>EZB Electronic Journals Library</source><creator>Silva, Ariosto ; Silva, Maria C ; Sudalagunta, Praneeth ; Distler, Allison ; Jacobson, Timothy ; Collins, Aunshka ; Nguyen, Tuan ; Song, Jinming ; Chen, Dung-Tsa ; Chen, Lu ; Cubitt, Christopher ; Baz, Rachid ; Perez, Lia ; Rebatchouk, Dmitri ; Dalton, William ; Greene, James ; Gatenby, Robert ; Gillies, Robert ; Sontag, Eduardo ; Meads, Mark B ; Shain, Kenneth H</creator><creatorcontrib>Silva, Ariosto ; Silva, Maria C ; Sudalagunta, Praneeth ; Distler, Allison ; Jacobson, Timothy ; Collins, Aunshka ; Nguyen, Tuan ; Song, Jinming ; Chen, Dung-Tsa ; Chen, Lu ; Cubitt, Christopher ; Baz, Rachid ; Perez, Lia ; Rebatchouk, Dmitri ; Dalton, William ; Greene, James ; Gatenby, Robert ; Gillies, Robert ; Sontag, Eduardo ; Meads, Mark B ; Shain, Kenneth H</creatorcontrib><description>Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson = 0.5658, &lt; 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. .</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-17-0502</identifier><identifier>PMID: 28400475</identifier><language>eng</language><publisher>United States: American Association for Cancer Research, Inc</publisher><subject>Algorithms ; Antineoplastic Agents - therapeutic use ; Biopsy ; Bone marrow ; Cancer ; Clinical trials ; Decision Support Techniques ; Digital imaging ; Drug screening ; Drugs ; High-Throughput Screening Assays ; Humans ; Image processing ; Mathematical models ; Models, Theoretical ; Multiple myeloma ; Multiple Myeloma - drug therapy ; Patients</subject><ispartof>Cancer research (Chicago, Ill.), 2017-06, Vol.77 (12), p.3336-3351</ispartof><rights>2017 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research, Inc. Jun 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53</citedby><cites>FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28400475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Ariosto</creatorcontrib><creatorcontrib>Silva, Maria C</creatorcontrib><creatorcontrib>Sudalagunta, Praneeth</creatorcontrib><creatorcontrib>Distler, Allison</creatorcontrib><creatorcontrib>Jacobson, Timothy</creatorcontrib><creatorcontrib>Collins, Aunshka</creatorcontrib><creatorcontrib>Nguyen, Tuan</creatorcontrib><creatorcontrib>Song, Jinming</creatorcontrib><creatorcontrib>Chen, Dung-Tsa</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Cubitt, Christopher</creatorcontrib><creatorcontrib>Baz, Rachid</creatorcontrib><creatorcontrib>Perez, Lia</creatorcontrib><creatorcontrib>Rebatchouk, Dmitri</creatorcontrib><creatorcontrib>Dalton, William</creatorcontrib><creatorcontrib>Greene, James</creatorcontrib><creatorcontrib>Gatenby, Robert</creatorcontrib><creatorcontrib>Gillies, Robert</creatorcontrib><creatorcontrib>Sontag, Eduardo</creatorcontrib><creatorcontrib>Meads, Mark B</creatorcontrib><creatorcontrib>Shain, Kenneth H</creatorcontrib><title>An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson = 0.5658, &lt; 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. .</description><subject>Algorithms</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biopsy</subject><subject>Bone marrow</subject><subject>Cancer</subject><subject>Clinical trials</subject><subject>Decision Support Techniques</subject><subject>Digital imaging</subject><subject>Drug screening</subject><subject>Drugs</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - drug therapy</subject><subject>Patients</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkdFKHTEQhoO06NH6CJZAb3qzNtkkm-xN4XCwVdAqpe1tyGYnNZJNTpNd0bfvLurB9iZDmG9-ZvgQOqHklFKhPhFCVCW4rE83628VlRURpN5DKyqYqiTn4g1a7ZgDdFjK3fwVlIh9dFArTgiXYoWu1xGfPeBf_j7hm2BGl_KA5wePt4BvMvTejj5FnBzeBB-9NQF_h7JNsQD2EV9NYfTbAPjqEUIazDv01plQ4Pi5HqGfX85-bM6ry-uvF5v1ZWU5a8eq6WUL1kppLHDKeu6k6wQTrAXTta7retsyAj2tuekb6qw1AqzjjQQDzUweoc9PudupG6C3EMdsgt5mP5j8qJPx-t9O9Lf6d7rXUtG24fUc8PE5IKc_E5RRD75YCMFESFPRVClJRC2FnNEP_6F3acpxPk_TVjGmWtYslHiibE6lZHC7ZSjRizK96NCLDj0r01TqRdk89_71JbupF0fsL2PPk5Q</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Silva, Ariosto</creator><creator>Silva, Maria C</creator><creator>Sudalagunta, Praneeth</creator><creator>Distler, Allison</creator><creator>Jacobson, Timothy</creator><creator>Collins, Aunshka</creator><creator>Nguyen, Tuan</creator><creator>Song, Jinming</creator><creator>Chen, Dung-Tsa</creator><creator>Chen, Lu</creator><creator>Cubitt, Christopher</creator><creator>Baz, Rachid</creator><creator>Perez, Lia</creator><creator>Rebatchouk, Dmitri</creator><creator>Dalton, William</creator><creator>Greene, James</creator><creator>Gatenby, Robert</creator><creator>Gillies, Robert</creator><creator>Sontag, Eduardo</creator><creator>Meads, Mark B</creator><creator>Shain, Kenneth H</creator><general>American Association for Cancer Research, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170615</creationdate><title>An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma</title><author>Silva, Ariosto ; Silva, Maria C ; Sudalagunta, Praneeth ; Distler, Allison ; Jacobson, Timothy ; Collins, Aunshka ; Nguyen, Tuan ; Song, Jinming ; Chen, Dung-Tsa ; Chen, Lu ; Cubitt, Christopher ; Baz, Rachid ; Perez, Lia ; Rebatchouk, Dmitri ; Dalton, William ; Greene, James ; Gatenby, Robert ; Gillies, Robert ; Sontag, Eduardo ; Meads, Mark B ; Shain, Kenneth H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biopsy</topic><topic>Bone marrow</topic><topic>Cancer</topic><topic>Clinical trials</topic><topic>Decision Support Techniques</topic><topic>Digital imaging</topic><topic>Drug screening</topic><topic>Drugs</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - drug therapy</topic><topic>Patients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Ariosto</creatorcontrib><creatorcontrib>Silva, Maria C</creatorcontrib><creatorcontrib>Sudalagunta, Praneeth</creatorcontrib><creatorcontrib>Distler, Allison</creatorcontrib><creatorcontrib>Jacobson, Timothy</creatorcontrib><creatorcontrib>Collins, Aunshka</creatorcontrib><creatorcontrib>Nguyen, Tuan</creatorcontrib><creatorcontrib>Song, Jinming</creatorcontrib><creatorcontrib>Chen, Dung-Tsa</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Cubitt, Christopher</creatorcontrib><creatorcontrib>Baz, Rachid</creatorcontrib><creatorcontrib>Perez, Lia</creatorcontrib><creatorcontrib>Rebatchouk, Dmitri</creatorcontrib><creatorcontrib>Dalton, William</creatorcontrib><creatorcontrib>Greene, James</creatorcontrib><creatorcontrib>Gatenby, Robert</creatorcontrib><creatorcontrib>Gillies, Robert</creatorcontrib><creatorcontrib>Sontag, Eduardo</creatorcontrib><creatorcontrib>Meads, Mark B</creatorcontrib><creatorcontrib>Shain, Kenneth H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Ariosto</au><au>Silva, Maria C</au><au>Sudalagunta, Praneeth</au><au>Distler, Allison</au><au>Jacobson, Timothy</au><au>Collins, Aunshka</au><au>Nguyen, Tuan</au><au>Song, Jinming</au><au>Chen, Dung-Tsa</au><au>Chen, Lu</au><au>Cubitt, Christopher</au><au>Baz, Rachid</au><au>Perez, Lia</au><au>Rebatchouk, Dmitri</au><au>Dalton, William</au><au>Greene, James</au><au>Gatenby, Robert</au><au>Gillies, Robert</au><au>Sontag, Eduardo</au><au>Meads, Mark B</au><au>Shain, Kenneth H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>77</volume><issue>12</issue><spage>3336</spage><epage>3351</epage><pages>3336-3351</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson = 0.5658, &lt; 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. .</abstract><cop>United States</cop><pub>American Association for Cancer Research, Inc</pub><pmid>28400475</pmid><doi>10.1158/0008-5472.CAN-17-0502</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2017-06, Vol.77 (12), p.3336-3351
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7819642
source EZB Electronic Journals Library
subjects Algorithms
Antineoplastic Agents - therapeutic use
Biopsy
Bone marrow
Cancer
Clinical trials
Decision Support Techniques
Digital imaging
Drug screening
Drugs
High-Throughput Screening Assays
Humans
Image processing
Mathematical models
Models, Theoretical
Multiple myeloma
Multiple Myeloma - drug therapy
Patients
title An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ex%20Vivo%20Platform%20for%20the%20Prediction%20of%20Clinical%20Response%20in%20Multiple%20Myeloma&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Silva,%20Ariosto&rft.date=2017-06-15&rft.volume=77&rft.issue=12&rft.spage=3336&rft.epage=3351&rft.pages=3336-3351&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-17-0502&rft_dat=%3Cproquest_pubme%3E1887052757%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-6d79ecc77ace413d4f7fb53539eab9fbbdc930ed124ad61fcca5ecf467eae6b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983389367&rft_id=info:pmid/28400475&rfr_iscdi=true