Loading…

Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy

Abstract Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (...

Full description

Saved in:
Bibliographic Details
Published in:Sleep (New York, N.Y.) N.Y.), 2021-01, Vol.44 (1), p.1
Main Authors: Gurges, Patrick, Liu, Hattie, Horner, Richard L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3
cites cdi_FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3
container_end_page
container_issue 1
container_start_page 1
container_title Sleep (New York, N.Y.)
container_volume 44
creator Gurges, Patrick
Liu, Hattie
Horner, Richard L
description Abstract Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p < 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p > 0.716) or responses to 5-HT (p > 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p > 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep–wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.
doi_str_mv 10.1093/sleep/zsaa144
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7819847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681828758</galeid><oup_id>10.1093/sleep/zsaa144</oup_id><sourcerecordid>A681828758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIREPhyBVZ4tLLNvZ6nfVyQIoqvkQRB8rZ8jrjxJXXNrY3IvxT_g1uEkqLkJAPI88883rGM1X1nOBzgns6TxYgzH8kKUnbPqhmhDFc9yX0sJphsiA1J5idVE9Susbl3vb0cXVCm65lDaGz6ucnv5qszMY75DW6Wn75WJM5RWojnQObkMwobwBtdsGvrU9JWjT67B1MsaQE7y2SboVAa1A5oeIrwfUEeyoiP-Uw5T0SIQXvEqRCIPiuTJaF2CHjCpGKQVuz9a-QGYM1al9SQrpopBxlhrWBw9UPxTGpbLaA9t0jGRxIFDYyjlL5Um6UYfe0eqSlTfDsaE-rr2_fXF28ry8_v_twsbysFSMs10ytuq7XlA8UKFs0ikkqV31LOcMdaTUe-uIA3rSkaQhwugBgGNgwaEoUaHpavT7ohmkYYaXAlXKtCNGMMu6El0bcjzizEWu_FR0nPW-7InB2FIj-2wQpi9EkBdZKB35Komkpph3hPS3oy7_Qaz9FV9oTDSO8I4se36HW0oIwTvvyrroRFcsFJ7zhHeOFOv8HVc4KRqPKgLUp_nsJ9SFBxbIHEfRtjwSLm10U-2mI4y4W_sXdj7mlfy_fn8b9FP6j9QsvUvAZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518716903</pqid></control><display><type>article</type><title>Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy</title><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Gurges, Patrick ; Liu, Hattie ; Horner, Richard L</creator><creatorcontrib>Gurges, Patrick ; Liu, Hattie ; Horner, Richard L</creatorcontrib><description>Abstract Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p &lt; 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p &gt; 0.716) or responses to 5-HT (p &gt; 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p &gt; 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep–wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.</description><identifier>ISSN: 0161-8105</identifier><identifier>EISSN: 1550-9109</identifier><identifier>DOI: 10.1093/sleep/zsaa144</identifier><identifier>PMID: 32745213</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Analysis ; Animals ; Basic Science of Sleep and Circadian Rhythms ; Drug therapy ; Hypoglossal Nerve ; Mice ; Motor Neurons ; Rats ; Rats, Wistar ; Sleep apnea ; Sleep apnea syndromes ; Sleep Apnea, Obstructive - drug therapy ; Tongue</subject><ispartof>Sleep (New York, N.Y.), 2021-01, Vol.44 (1), p.1</ispartof><rights>Sleep Research Society 2020. Published by Oxford University Press on behalf of the Sleep Research Society. 2020</rights><rights>Sleep Research Society 2020. Published by Oxford University Press on behalf of the Sleep Research Society.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3</citedby><cites>FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3</cites><orcidid>0000-0002-5593-2548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32745213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurges, Patrick</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Horner, Richard L</creatorcontrib><title>Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy</title><title>Sleep (New York, N.Y.)</title><addtitle>Sleep</addtitle><description>Abstract Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p &lt; 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p &gt; 0.716) or responses to 5-HT (p &gt; 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p &gt; 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep–wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.</description><subject>Analysis</subject><subject>Animals</subject><subject>Basic Science of Sleep and Circadian Rhythms</subject><subject>Drug therapy</subject><subject>Hypoglossal Nerve</subject><subject>Mice</subject><subject>Motor Neurons</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Sleep apnea</subject><subject>Sleep apnea syndromes</subject><subject>Sleep Apnea, Obstructive - drug therapy</subject><subject>Tongue</subject><issn>0161-8105</issn><issn>1550-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkk1vEzEQhlcIREPhyBVZ4tLLNvZ6nfVyQIoqvkQRB8rZ8jrjxJXXNrY3IvxT_g1uEkqLkJAPI88883rGM1X1nOBzgns6TxYgzH8kKUnbPqhmhDFc9yX0sJphsiA1J5idVE9Susbl3vb0cXVCm65lDaGz6ucnv5qszMY75DW6Wn75WJM5RWojnQObkMwobwBtdsGvrU9JWjT67B1MsaQE7y2SboVAa1A5oeIrwfUEeyoiP-Uw5T0SIQXvEqRCIPiuTJaF2CHjCpGKQVuz9a-QGYM1al9SQrpopBxlhrWBw9UPxTGpbLaA9t0jGRxIFDYyjlL5Um6UYfe0eqSlTfDsaE-rr2_fXF28ry8_v_twsbysFSMs10ytuq7XlA8UKFs0ikkqV31LOcMdaTUe-uIA3rSkaQhwugBgGNgwaEoUaHpavT7ohmkYYaXAlXKtCNGMMu6El0bcjzizEWu_FR0nPW-7InB2FIj-2wQpi9EkBdZKB35Komkpph3hPS3oy7_Qaz9FV9oTDSO8I4se36HW0oIwTvvyrroRFcsFJ7zhHeOFOv8HVc4KRqPKgLUp_nsJ9SFBxbIHEfRtjwSLm10U-2mI4y4W_sXdj7mlfy_fn8b9FP6j9QsvUvAZ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gurges, Patrick</creator><creator>Liu, Hattie</creator><creator>Horner, Richard L</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5593-2548</orcidid></search><sort><creationdate>20210101</creationdate><title>Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy</title><author>Gurges, Patrick ; Liu, Hattie ; Horner, Richard L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Basic Science of Sleep and Circadian Rhythms</topic><topic>Drug therapy</topic><topic>Hypoglossal Nerve</topic><topic>Mice</topic><topic>Motor Neurons</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Sleep apnea</topic><topic>Sleep apnea syndromes</topic><topic>Sleep Apnea, Obstructive - drug therapy</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurges, Patrick</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Horner, Richard L</creatorcontrib><collection>OUP_牛津大学出版社OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Journals (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sleep (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurges, Patrick</au><au>Liu, Hattie</au><au>Horner, Richard L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy</atitle><jtitle>Sleep (New York, N.Y.)</jtitle><addtitle>Sleep</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0161-8105</issn><eissn>1550-9109</eissn><abstract>Abstract Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p &lt; 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p &gt; 0.716) or responses to 5-HT (p &gt; 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p &gt; 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep–wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>32745213</pmid><doi>10.1093/sleep/zsaa144</doi><orcidid>https://orcid.org/0000-0002-5593-2548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-8105
ispartof Sleep (New York, N.Y.), 2021-01, Vol.44 (1), p.1
issn 0161-8105
1550-9109
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7819847
source Oxford Journals Online; Alma/SFX Local Collection
subjects Analysis
Animals
Basic Science of Sleep and Circadian Rhythms
Drug therapy
Hypoglossal Nerve
Mice
Motor Neurons
Rats
Rats, Wistar
Sleep apnea
Sleep apnea syndromes
Sleep Apnea, Obstructive - drug therapy
Tongue
title Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20TASK-1/3%20channels%20at%20the%20hypoglossal%20motoneuron%20pool%20and%20effects%20on%20tongue%20motor%20output%20and%20responses%20to%20excitatory%20inputs%20in%20vivo:%20implications%20for%20strategies%20for%20obstructive%20sleep%20apnea%20pharmacotherapy&rft.jtitle=Sleep%20(New%20York,%20N.Y.)&rft.au=Gurges,%20Patrick&rft.date=2021-01-01&rft.volume=44&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0161-8105&rft.eissn=1550-9109&rft_id=info:doi/10.1093/sleep/zsaa144&rft_dat=%3Cgale_pubme%3EA681828758%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-5cd779f38b3e3562c5a3ad943850714f0b9a3ae8241221e836ee50e5bbf31cef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518716903&rft_id=info:pmid/32745213&rft_galeid=A681828758&rft_oup_id=10.1093/sleep/zsaa144&rfr_iscdi=true