Loading…

Current challenges and best-practice protocols for microbiome analysis

Abstract Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by expe...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2021-01, Vol.22 (1), p.178-193
Main Authors: Bharti, Richa, Grimm, Dominik G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903
cites cdi_FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903
container_end_page 193
container_issue 1
container_start_page 178
container_title Briefings in bioinformatics
container_volume 22
creator Bharti, Richa
Grimm, Dominik G
description Abstract Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).
doi_str_mv 10.1093/bib/bbz155
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbz155</oup_id><sourcerecordid>2328345319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgiveNDyAFEUSo5nYm6UaQwVFhwI2uQ5JmNNI2NWmF8emNjIq6cJVAPn7OyY_QAcFnBFfs3HhzbswbAVhD24QLUXIMfP3HfQvtpPSMMcVCkk20xYjkEgTfRrPpGKPrhsI-6aZx3aNLhe7qwrg0lH3UdvDWFX0MQ7ChScUixKL1NgbjQ-sy1c0y-bSHNha6SW7_89xFD7Or--lNOb-7vp1ezksLnA0lkwwbAEt5zSfAqCAMAENdATBwtSSgJwLXVmujKWe2yqSiQJwUVMgKs110scrtR9O62ubJo25UH32r41IF7dXvl84_qcfwqoSkWLIqB5x8BsTwMuYlVeuTdU2jOxfGpCijknFg5IMe_aHPYYx54ayAVtVEsgnN6nSl8p-kFN3iexiC1Uc9KtejVvVkfPhz_G_61UcGxysQxv6_oHfTCpe2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529968362</pqid></control><display><type>article</type><title>Current challenges and best-practice protocols for microbiome analysis</title><source>PubMed (Medline)</source><source>Business Source Ultimate</source><source>Oxford Open</source><creator>Bharti, Richa ; Grimm, Dominik G</creator><creatorcontrib>Bharti, Richa ; Grimm, Dominik G</creatorcontrib><description>Abstract Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).</description><identifier>ISSN: 1477-4054</identifier><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbz155</identifier><identifier>PMID: 31848574</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Annotations ; Assembly ; Computer applications ; Design of experiments ; DNA Barcoding, Taxonomic - methods ; DNA Barcoding, Taxonomic - standards ; Experimental design ; Humans ; Metagenomics ; Metagenomics - methods ; Metagenomics - standards ; Microbiomes ; Microbiota - genetics ; Microorganisms ; Next-generation sequencing ; Practice Guidelines as Topic ; Quality control ; Review ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sequence Analysis, DNA - methods ; Sequence Analysis, DNA - standards ; Species diversity ; Statistical analysis</subject><ispartof>Briefings in bioinformatics, 2021-01, Vol.22 (1), p.178-193</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903</citedby><cites>FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903</cites><orcidid>0000-0003-2085-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820839/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820839/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31848574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bharti, Richa</creatorcontrib><creatorcontrib>Grimm, Dominik G</creatorcontrib><title>Current challenges and best-practice protocols for microbiome analysis</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).</description><subject>Animals</subject><subject>Annotations</subject><subject>Assembly</subject><subject>Computer applications</subject><subject>Design of experiments</subject><subject>DNA Barcoding, Taxonomic - methods</subject><subject>DNA Barcoding, Taxonomic - standards</subject><subject>Experimental design</subject><subject>Humans</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Metagenomics - standards</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>Next-generation sequencing</subject><subject>Practice Guidelines as Topic</subject><subject>Quality control</subject><subject>Review</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Sequence Analysis, DNA - standards</subject><subject>Species diversity</subject><subject>Statistical analysis</subject><issn>1477-4054</issn><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp90ctKxDAUBuAgiveNDyAFEUSo5nYm6UaQwVFhwI2uQ5JmNNI2NWmF8emNjIq6cJVAPn7OyY_QAcFnBFfs3HhzbswbAVhD24QLUXIMfP3HfQvtpPSMMcVCkk20xYjkEgTfRrPpGKPrhsI-6aZx3aNLhe7qwrg0lH3UdvDWFX0MQ7ChScUixKL1NgbjQ-sy1c0y-bSHNha6SW7_89xFD7Or--lNOb-7vp1ezksLnA0lkwwbAEt5zSfAqCAMAENdATBwtSSgJwLXVmujKWe2yqSiQJwUVMgKs110scrtR9O62ubJo25UH32r41IF7dXvl84_qcfwqoSkWLIqB5x8BsTwMuYlVeuTdU2jOxfGpCijknFg5IMe_aHPYYx54ayAVtVEsgnN6nSl8p-kFN3iexiC1Uc9KtejVvVkfPhz_G_61UcGxysQxv6_oHfTCpe2</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Bharti, Richa</creator><creator>Grimm, Dominik G</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2085-4591</orcidid></search><sort><creationdate>20210118</creationdate><title>Current challenges and best-practice protocols for microbiome analysis</title><author>Bharti, Richa ; Grimm, Dominik G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Annotations</topic><topic>Assembly</topic><topic>Computer applications</topic><topic>Design of experiments</topic><topic>DNA Barcoding, Taxonomic - methods</topic><topic>DNA Barcoding, Taxonomic - standards</topic><topic>Experimental design</topic><topic>Humans</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Metagenomics - standards</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>Next-generation sequencing</topic><topic>Practice Guidelines as Topic</topic><topic>Quality control</topic><topic>Review</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Sequence Analysis, DNA - standards</topic><topic>Species diversity</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharti, Richa</creatorcontrib><creatorcontrib>Grimm, Dominik G</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharti, Richa</au><au>Grimm, Dominik G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current challenges and best-practice protocols for microbiome analysis</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>178</spage><epage>193</epage><pages>178-193</pages><issn>1477-4054</issn><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31848574</pmid><doi>10.1093/bib/bbz155</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2085-4591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-4054
ispartof Briefings in bioinformatics, 2021-01, Vol.22 (1), p.178-193
issn 1477-4054
1467-5463
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820839
source PubMed (Medline); Business Source Ultimate; Oxford Open
subjects Animals
Annotations
Assembly
Computer applications
Design of experiments
DNA Barcoding, Taxonomic - methods
DNA Barcoding, Taxonomic - standards
Experimental design
Humans
Metagenomics
Metagenomics - methods
Metagenomics - standards
Microbiomes
Microbiota - genetics
Microorganisms
Next-generation sequencing
Practice Guidelines as Topic
Quality control
Review
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, DNA - methods
Sequence Analysis, DNA - standards
Species diversity
Statistical analysis
title Current challenges and best-practice protocols for microbiome analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20challenges%20and%20best-practice%20protocols%20for%20microbiome%20analysis&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Bharti,%20Richa&rft.date=2021-01-18&rft.volume=22&rft.issue=1&rft.spage=178&rft.epage=193&rft.pages=178-193&rft.issn=1477-4054&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbz155&rft_dat=%3Cproquest_pubme%3E2328345319%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-3830b55c24d465327135505d95535ed815a670dcaaba243c93279251e87278903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529968362&rft_id=info:pmid/31848574&rft_oup_id=10.1093/bib/bbz155&rfr_iscdi=true