Loading…

Gas Sensor Based on Surface Enhanced Raman Scattering

In order to address problems of safety and identification in gas detection, an optical detection method based on surface enhanced Raman scattering (SERS) was studied to detect ethanol vapor. A SERS device of silver nanoparticles modified polyvinylpyrrolidone (PVP) was realized by freeze-drying metho...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-01, Vol.14 (2), p.388
Main Authors: Wang, Xu-Ming, Li, Xin, Liu, Wei-Hua, Han, Chuan-Yu, Wang, Xiao-Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to address problems of safety and identification in gas detection, an optical detection method based on surface enhanced Raman scattering (SERS) was studied to detect ethanol vapor. A SERS device of silver nanoparticles modified polyvinylpyrrolidone (PVP) was realized by freeze-drying method. This SERS device was placed in a micro transparent cavity in order to inject ethanol vapor of 4% and obtain Raman signals by confocal Raman spectrometer. We compared different types of SERS devices and found that the modification of polyvinylpyrrolidone improves adsorption of ethanol molecules on surfaces of silver nanoparticle, and finally we provide the mechanism by theory and experiment. Finite Difference Time Domain(FDTD) simulation shows that single layer close-packed Ag nanoparticles have strong local electric field in a wide spectral range. In this study, we provide a case for safety and fingerprint recognition of ethanol vapor at room temperature and atmospheric pressure.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14020388