Loading…
How do social media and individual behaviors affect epidemic transmission and control?
In the outbreak of infectious diseases such as COVID-19, social media channels are important tools for the public to obtain information and form their opinions on infection risk, which can affect their disease prevention behaviors and the consequent disease transmission processes. However, there has...
Saved in:
Published in: | The Science of the total environment 2021-03, Vol.761, p.144114-144114, Article 144114 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the outbreak of infectious diseases such as COVID-19, social media channels are important tools for the public to obtain information and form their opinions on infection risk, which can affect their disease prevention behaviors and the consequent disease transmission processes. However, there has been a lack of theoretical investigation into how social media and human behaviors jointly affect the spread of infectious diseases. In this study, we develop an agent-based modeling framework that couples (1) a general opinion dynamics model that describes how individuals form their opinions on epidemic risk with various information sources, (2) a behavioral adoption model that simulates the adoption of disease prevention behaviors, and (3) an epidemiological SEIR model that simulates the spread of diseases in a host population. Through simulating the spread of a coronavirus-like disease in a hypothetical residential area, the modeling results show that social media can make a community more sensitive to external drivers. Social media can increase the public's awareness of infection risk, which is beneficial for epidemic containment, when high-quality epidemic information exists at the early stage of pandemics. However, fabricated and fake news on social media, after a “latent period”, can lead to a significant increase in infection rate. The modeling results provide scientific evidence for the intricate interplay between social media and human behaviors in epidemic dynamics and control, and highlight the importance of public education to promote behavioral changes and the need to correct misinformation and fake news on social media in a timely manner.
[Display omitted]
•An integrated model is developed to simulate opinion-behavior-disease dynamic system•Social media can make the system more sensitive to external drivers in epidemics•Social media can increase the public's awareness of infection risk•Fake news on social media can greatly increase infection rate after a latent period |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.144114 |