Loading…

Toward noise certification during design: airframe noise simulations for full-scale, complete aircraft

An overview of a recent, NASA-sponsored effort to substantially advance simulation-based airframe noise prediction is presented. An accurate characterization of this component of aircraft noise requires a high-fidelity representation of the finer geometrical details associated with the landing gear...

Full description

Saved in:
Bibliographic Details
Published in:CEAS aeronautical journal 2019-03, Vol.10 (1), p.31-67
Main Authors: Khorrami, Mehdi R., Fares, Ehab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An overview of a recent, NASA-sponsored effort to substantially advance simulation-based airframe noise prediction is presented. An accurate characterization of this component of aircraft noise requires a high-fidelity representation of the finer geometrical details associated with the landing gear and wing high-lift devices, such as slats and flaps, which constitute major noise sources. To achieve this ambitious goal, a systematic approach was followed to extend our current state-of-the-art computational tools to a full-scale, complete aircraft in landing configuration within a realistic flight environment. The work involved several phases: high-fidelity, large-scale, unsteady flow simulations; model-scale experiments in ground-based facilities; and farfield noise prediction for a full-scale, complete aircraft. The comprehensive aeroacoustic database generated during the course of the 6-year effort provided a wealth of relevant information for full validation and benchmarking of the advanced computational tools used in the present work. The database will also foster the development of simulation methodologies with improved predictive capabilities.
ISSN:1869-5582
1869-5590
DOI:10.1007/s13272-019-00378-1