Loading…
Emulsion Polymerizations for a Sustainable Preparation of Efficient TEMPO‐based Electrodes
Organic polymer‐based batteries represent a promising alternative to present‐day metal‐based systems and a valuable step toward printable and customizable energy storage devices. However, most scientific work is focussed on the development of new redox‐active organic materials, while straightforward...
Saved in:
Published in: | ChemSusChem 2021-01, Vol.14 (1), p.449-455 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic polymer‐based batteries represent a promising alternative to present‐day metal‐based systems and a valuable step toward printable and customizable energy storage devices. However, most scientific work is focussed on the development of new redox‐active organic materials, while straightforward manufacturing and sustainable materials and production will be a necessary key for the transformation to mass market applications. Here, a new synthetic approach for 2,2,6,6‐tetramethyl‐4‐piperinidyl‐N‐oxyl (TEMPO)‐based polymer particles by emulsion polymerization and their electrochemical investigation are reported. The developed emulsion polymerization protocol based on an aqueous reaction medium allowed the sustainable synthesis of a redox‐active electrode material, combined with simple variation of the polymer particle size, which enabled the preparation of nanoparticles from 35 to 138 nm. Their application in cell experiments revealed a significant effect of the size of the active‐polymer particles on the performance of poly(2,2,6,6‐tetramethyl‐4‐piperinidyl‐N‐oxyl methacrylate) (PTMA)‐based electrodes. In particular rate capabilities were found to be reduced with larger diameters. Nevertheless, all cells based on the different particles revealed the ability to recover from temporary capacity loss due to application of very high charge/discharge rates.
Sustainable and efficient organic electrode: A new synthetic approach for polymers for organic batteries includes an emulsion polymerization with adjustable particle sizes in aqueous dispersions and allows the sustainable manufacturing of active materials and composite electrodes. The electrochemical investigation shows that the influence of particle sizes and the resulting morphologies of composite films on the cell performance is as important as the active material itself. |
---|---|
ISSN: | 1864-5631 1864-564X |
DOI: | 10.1002/cssc.202002251 |