Loading…
Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations
Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. W...
Saved in:
Published in: | Biophysical journal 2021-01, Vol.120 (2), p.189-204 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3 |
container_end_page | 204 |
container_issue | 2 |
container_start_page | 189 |
container_title | Biophysical journal |
container_volume | 120 |
creator | McCoy, Matthew D. Hamre, John Klimov, Dmitri K. Jafri, M. Saleet |
description | Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model. |
doi_str_mv | 10.1016/j.bpj.2020.12.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7840418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349520332033</els_id><sourcerecordid>2471460545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3</originalsourceid><addsrcrecordid>eNp9kVFrFDEQx4Mo9lr9AL7IPvqy50ySze4hCFJqW7iiUOtryCVzbY695ExyB_32Zrla9MW8DEl-85-QH2PvEOYIqD5u5qvdZs6B1z2fA_AXbIad5C3AoF6yGQCoVshFd8JOc94AIO8AX7MTMS0Qcsb090TO2-LDfXNJgYq3zU-TvCk-huaWDpR8eWzu8gTcGPvgAzVLMilMByU216FQ2iUqzU0cye5Hk5pbv611Sshv2Ku1GTO9fapn7O7rxY_zq3b57fL6_MuytbLD0nZCUM_dquODcsYoGKztJQ5knZLIe1xZx5UTi94Ys-BSDShF75DWgguFa3HGPh9zd_vVlpylUJIZ9S75rUmPOhqv_70J_kHfx4PuBwl1UA348BSQ4q895aK3PlsaRxMo7rPmskepoJNdRfGI2hRzTrR-HoOgJzF6o6sYPYnRyHUVU3ve__2-544_Jirw6QhQ_aWDp6Sz9RRstZPIFu2i_0_8b4gan-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471460545</pqid></control><display><type>article</type><title>Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations</title><source>PubMed Central</source><creator>McCoy, Matthew D. ; Hamre, John ; Klimov, Dmitri K. ; Jafri, M. Saleet</creator><creatorcontrib>McCoy, Matthew D. ; Hamre, John ; Klimov, Dmitri K. ; Jafri, M. Saleet</creatorcontrib><description>Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.12.002</identifier><identifier>PMID: 33333034</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computational Biology ; Computational Tool ; Genetic Predisposition to Disease ; Genetic Variation ; Humans ; Machine Learning ; Mutation, Missense ; Phenotype</subject><ispartof>Biophysical journal, 2021-01, Vol.120 (2), p.189-204</ispartof><rights>2020 Biophysical Society</rights><rights>Copyright © 2020 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 Biophysical Society. 2020 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3</citedby><cites>FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840418/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840418/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33333034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCoy, Matthew D.</creatorcontrib><creatorcontrib>Hamre, John</creatorcontrib><creatorcontrib>Klimov, Dmitri K.</creatorcontrib><creatorcontrib>Jafri, M. Saleet</creatorcontrib><title>Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.</description><subject>Computational Biology</subject><subject>Computational Tool</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Variation</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Mutation, Missense</subject><subject>Phenotype</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kVFrFDEQx4Mo9lr9AL7IPvqy50ySze4hCFJqW7iiUOtryCVzbY695ExyB_32Zrla9MW8DEl-85-QH2PvEOYIqD5u5qvdZs6B1z2fA_AXbIad5C3AoF6yGQCoVshFd8JOc94AIO8AX7MTMS0Qcsb090TO2-LDfXNJgYq3zU-TvCk-huaWDpR8eWzu8gTcGPvgAzVLMilMByU216FQ2iUqzU0cye5Hk5pbv611Sshv2Ku1GTO9fapn7O7rxY_zq3b57fL6_MuytbLD0nZCUM_dquODcsYoGKztJQ5knZLIe1xZx5UTi94Ys-BSDShF75DWgguFa3HGPh9zd_vVlpylUJIZ9S75rUmPOhqv_70J_kHfx4PuBwl1UA348BSQ4q895aK3PlsaRxMo7rPmskepoJNdRfGI2hRzTrR-HoOgJzF6o6sYPYnRyHUVU3ve__2-544_Jirw6QhQ_aWDp6Sz9RRstZPIFu2i_0_8b4gan-Y</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>McCoy, Matthew D.</creator><creator>Hamre, John</creator><creator>Klimov, Dmitri K.</creator><creator>Jafri, M. Saleet</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210119</creationdate><title>Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations</title><author>McCoy, Matthew D. ; Hamre, John ; Klimov, Dmitri K. ; Jafri, M. Saleet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Biology</topic><topic>Computational Tool</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Variation</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Mutation, Missense</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCoy, Matthew D.</creatorcontrib><creatorcontrib>Hamre, John</creatorcontrib><creatorcontrib>Klimov, Dmitri K.</creatorcontrib><creatorcontrib>Jafri, M. Saleet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCoy, Matthew D.</au><au>Hamre, John</au><au>Klimov, Dmitri K.</au><au>Jafri, M. Saleet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>120</volume><issue>2</issue><spage>189</spage><epage>204</epage><pages>189-204</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33333034</pmid><doi>10.1016/j.bpj.2020.12.002</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2021-01, Vol.120 (2), p.189-204 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7840418 |
source | PubMed Central |
subjects | Computational Biology Computational Tool Genetic Predisposition to Disease Genetic Variation Humans Machine Learning Mutation, Missense Phenotype |
title | Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Genetic%20Variation%20Severity%20Using%20Machine%20Learning%20to%20Interpret%20Molecular%20Simulations&rft.jtitle=Biophysical%20journal&rft.au=McCoy,%20Matthew%20D.&rft.date=2021-01-19&rft.volume=120&rft.issue=2&rft.spage=189&rft.epage=204&rft.pages=189-204&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.12.002&rft_dat=%3Cproquest_pubme%3E2471460545%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-533e72db5286daa608cc7418ecd641271bcd26d397aaa924681437d1ef32361f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471460545&rft_id=info:pmid/33333034&rfr_iscdi=true |