Loading…

MicroRNA-511 Inhibits Cellular Proliferation and Invasion in Colorectal Cancer by Directly Targeting Hepatoma-Derived Growth Factor

Dysregulated microRNA (miRNA) expression is involved in the occurrence and development of colorectal cancer (CRC) through the regulation of various important physiological events. Hence, miRNAs may be used as effective targets for CRC treatment; however, this hypothesis warrants further investigatio...

Full description

Saved in:
Bibliographic Details
Published in:Oncology research 2018-10, Vol.26 (9), p.1355-1363
Main Authors: He, Saifei, Wang, Guangdong, Ni, Jing, Zhuang, Juhua, Zhuang, Suiliang, Wang, Guoyu, Ye, Ying, Xia, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dysregulated microRNA (miRNA) expression is involved in the occurrence and development of colorectal cancer (CRC) through the regulation of various important physiological events. Hence, miRNAs may be used as effective targets for CRC treatment; however, this hypothesis warrants further investigation. miRNA-511 (miR-511) plays vital roles in the progression of different tumor types. However, the expression, exact role, and the mechanisms underlying the regulation of colorectal carcinogenesis and progression by miR-511 remain poorly understood. This study presents that miR-511 expression was decreased in CRC tissues and cell lines compared with that in adjacent nonneoplastic tissues and normal human colon epithelium cell lines, respectively. The enforced expression of miR-511 in CRC cells significantly reduced cell proliferation and invasion. Hepatoma-derived growth factor (HDGF) was mechanically validated as a direct target of miR-511 in CRC. Furthermore, miR-511 was negatively associated with HDGF in CRC tissues. The restored HDGF expression can abrogate the tumor-suppressive roles of miR-511 in CRC cells. More importantly, miR-511 overexpression suppressed the PI3K/AKT signaling pathway in CRC. These results suggest that miR-511 can potentially serve as a therapeutic target for the therapy of patients with CRC.
ISSN:0965-0407
1555-3906
DOI:10.3727/096504018X15154094331876