Loading…

Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya

To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included i...

Full description

Saved in:
Bibliographic Details
Published in:AIDS and behavior 2021-02, Vol.25 (2), p.297-310
Main Authors: Muttai, Hellen, Guyah, Bernard, Musingila, Paul, Achia, Thomas, Miruka, Fredrick, Wanjohi, Stella, Dande, Caroline, Musee, Polycarp, Lugalia, Fillet, Onyango, Dickens, Kinywa, Eunice, Okomo, Gordon, Moth, Iscah, Omondi, Samuel, Ayieko, Caren, Nganga, Lucy, Joseph, Rachael H., Zielinski-Gutierrez, Emily
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3
cites cdi_FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3
container_end_page 310
container_issue 2
container_start_page 297
container_title AIDS and behavior
container_volume 25
creator Muttai, Hellen
Guyah, Bernard
Musingila, Paul
Achia, Thomas
Miruka, Fredrick
Wanjohi, Stella
Dande, Caroline
Musee, Polycarp
Lugalia, Fillet
Onyango, Dickens
Kinywa, Eunice
Okomo, Gordon
Moth, Iscah
Omondi, Samuel
Ayieko, Caren
Nganga, Lucy
Joseph, Rachael H.
Zielinski-Gutierrez, Emily
description To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10–15, 16–29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46–0.75], 1.35% (95% CI 0.85–1.84), 2.65% (95% CI 1.8–3.51), and 15.15% (95% CI 9.03–21.27), respectively. The algorithm’s discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53–0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.
doi_str_mv 10.1007/s10461-020-02962-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483414499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEoqXwAiyQJTZsAr7FnmyQpsOlFZWQ6NCtdeKcZFwSe7CTkfoqPC3uTCmXBQv7HOl857d__UXxnNHXjFL9JjEqFSspp_nUipf6QXHMKi1KwSv5MPe0pqVmqjoqnqR0TSmtla4fF0eCq4ppxY-LH-9wh0PYjugnAr4lVzC4FiYXPAkdAXIZrAstjqGPsN04u4dOcQM7FyIMZLWBCHbC6NLkbCpPIWFLvrj0rby0ISJZDn2IbtqMpAuRrCH2ODnfk7PzK7LGtO-XY7i923mYEnGefEJ_A0-LRx0MCZ_d1ZPi64f369VZefH54_lqeVFaqeVUam5bi1YwIXNlClBoxjWArZRVCjqFgsKiodjWTbugitY1Z03VaA2sw0acFG8Putu5GTFr-CkbM9voRog3JoAzf0-825g-7IxeSFUJmgVe3QnE8H3OlszoksVhAI9hToZLLqiSouIZffkPeh3m6LO9TC2EZFLWdab4gbIxpBSxu_8Mo-Y2enOI3uTozT56o_PSiz9t3K_8yjoD4gCkPPI9xt9v_0f2J7LkvPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483414499</pqid></control><display><type>article</type><title>Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya</title><source>Criminology Collection</source><source>Social Science Premium Collection</source><source>Sociology Collection</source><source>Springer Link</source><source>Sociological Abstracts</source><creator>Muttai, Hellen ; Guyah, Bernard ; Musingila, Paul ; Achia, Thomas ; Miruka, Fredrick ; Wanjohi, Stella ; Dande, Caroline ; Musee, Polycarp ; Lugalia, Fillet ; Onyango, Dickens ; Kinywa, Eunice ; Okomo, Gordon ; Moth, Iscah ; Omondi, Samuel ; Ayieko, Caren ; Nganga, Lucy ; Joseph, Rachael H. ; Zielinski-Gutierrez, Emily</creator><creatorcontrib>Muttai, Hellen ; Guyah, Bernard ; Musingila, Paul ; Achia, Thomas ; Miruka, Fredrick ; Wanjohi, Stella ; Dande, Caroline ; Musee, Polycarp ; Lugalia, Fillet ; Onyango, Dickens ; Kinywa, Eunice ; Okomo, Gordon ; Moth, Iscah ; Omondi, Samuel ; Ayieko, Caren ; Nganga, Lucy ; Joseph, Rachael H. ; Zielinski-Gutierrez, Emily</creatorcontrib><description>To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10–15, 16–29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46–0.75], 1.35% (95% CI 0.85–1.84), 2.65% (95% CI 1.8–3.51), and 15.15% (95% CI 9.03–21.27), respectively. The algorithm’s discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53–0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.</description><identifier>ISSN: 1090-7165</identifier><identifier>EISSN: 1573-3254</identifier><identifier>DOI: 10.1007/s10461-020-02962-7</identifier><identifier>PMID: 32651762</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Adults ; Algorithms ; Confidence intervals ; Demography ; Discrimination ; Health care facilities ; Health Psychology ; HIV ; HIV Infections - diagnosis ; HIV Infections - epidemiology ; HIV Infections - prevention &amp; control ; HIV Testing ; Human immunodeficiency virus ; Humans ; Infectious Diseases ; Kenya - epidemiology ; Medical tests ; Medicine ; Medicine &amp; Public Health ; Original Paper ; Public Health ; Risk ; Risk Factors ; Risk taking ; Sociodemographics ; Socioeconomic Factors</subject><ispartof>AIDS and behavior, 2021-02, Vol.25 (2), p.297-310</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3</citedby><cites>FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3</cites><orcidid>0000-0003-1598-6418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2483414499/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2483414499?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21376,21394,21395,27344,27924,27925,33611,33612,33769,33770,33774,34530,34531,43733,43814,44115,74221,74310,74639</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32651762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muttai, Hellen</creatorcontrib><creatorcontrib>Guyah, Bernard</creatorcontrib><creatorcontrib>Musingila, Paul</creatorcontrib><creatorcontrib>Achia, Thomas</creatorcontrib><creatorcontrib>Miruka, Fredrick</creatorcontrib><creatorcontrib>Wanjohi, Stella</creatorcontrib><creatorcontrib>Dande, Caroline</creatorcontrib><creatorcontrib>Musee, Polycarp</creatorcontrib><creatorcontrib>Lugalia, Fillet</creatorcontrib><creatorcontrib>Onyango, Dickens</creatorcontrib><creatorcontrib>Kinywa, Eunice</creatorcontrib><creatorcontrib>Okomo, Gordon</creatorcontrib><creatorcontrib>Moth, Iscah</creatorcontrib><creatorcontrib>Omondi, Samuel</creatorcontrib><creatorcontrib>Ayieko, Caren</creatorcontrib><creatorcontrib>Nganga, Lucy</creatorcontrib><creatorcontrib>Joseph, Rachael H.</creatorcontrib><creatorcontrib>Zielinski-Gutierrez, Emily</creatorcontrib><title>Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya</title><title>AIDS and behavior</title><addtitle>AIDS Behav</addtitle><addtitle>AIDS Behav</addtitle><description>To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10–15, 16–29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46–0.75], 1.35% (95% CI 0.85–1.84), 2.65% (95% CI 1.8–3.51), and 15.15% (95% CI 9.03–21.27), respectively. The algorithm’s discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53–0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.</description><subject>Adult</subject><subject>Adults</subject><subject>Algorithms</subject><subject>Confidence intervals</subject><subject>Demography</subject><subject>Discrimination</subject><subject>Health care facilities</subject><subject>Health Psychology</subject><subject>HIV</subject><subject>HIV Infections - diagnosis</subject><subject>HIV Infections - epidemiology</subject><subject>HIV Infections - prevention &amp; control</subject><subject>HIV Testing</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Kenya - epidemiology</subject><subject>Medical tests</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original Paper</subject><subject>Public Health</subject><subject>Risk</subject><subject>Risk Factors</subject><subject>Risk taking</subject><subject>Sociodemographics</subject><subject>Socioeconomic Factors</subject><issn>1090-7165</issn><issn>1573-3254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>BGRYB</sourceid><sourceid>BHHNA</sourceid><sourceid>HEHIP</sourceid><sourceid>M0O</sourceid><sourceid>M2S</sourceid><recordid>eNp9kctu1DAUhiMEoqXwAiyQJTZsAr7FnmyQpsOlFZWQ6NCtdeKcZFwSe7CTkfoqPC3uTCmXBQv7HOl857d__UXxnNHXjFL9JjEqFSspp_nUipf6QXHMKi1KwSv5MPe0pqVmqjoqnqR0TSmtla4fF0eCq4ppxY-LH-9wh0PYjugnAr4lVzC4FiYXPAkdAXIZrAstjqGPsN04u4dOcQM7FyIMZLWBCHbC6NLkbCpPIWFLvrj0rby0ISJZDn2IbtqMpAuRrCH2ODnfk7PzK7LGtO-XY7i923mYEnGefEJ_A0-LRx0MCZ_d1ZPi64f369VZefH54_lqeVFaqeVUam5bi1YwIXNlClBoxjWArZRVCjqFgsKiodjWTbugitY1Z03VaA2sw0acFG8Putu5GTFr-CkbM9voRog3JoAzf0-825g-7IxeSFUJmgVe3QnE8H3OlszoksVhAI9hToZLLqiSouIZffkPeh3m6LO9TC2EZFLWdab4gbIxpBSxu_8Mo-Y2enOI3uTozT56o_PSiz9t3K_8yjoD4gCkPPI9xt9v_0f2J7LkvPM</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Muttai, Hellen</creator><creator>Guyah, Bernard</creator><creator>Musingila, Paul</creator><creator>Achia, Thomas</creator><creator>Miruka, Fredrick</creator><creator>Wanjohi, Stella</creator><creator>Dande, Caroline</creator><creator>Musee, Polycarp</creator><creator>Lugalia, Fillet</creator><creator>Onyango, Dickens</creator><creator>Kinywa, Eunice</creator><creator>Okomo, Gordon</creator><creator>Moth, Iscah</creator><creator>Omondi, Samuel</creator><creator>Ayieko, Caren</creator><creator>Nganga, Lucy</creator><creator>Joseph, Rachael H.</creator><creator>Zielinski-Gutierrez, Emily</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7RV</scope><scope>7T2</scope><scope>7U3</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AM</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGRYB</scope><scope>BHHNA</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HEHIP</scope><scope>K7.</scope><scope>K9.</scope><scope>KB0</scope><scope>M0O</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1598-6418</orcidid></search><sort><creationdate>20210201</creationdate><title>Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya</title><author>Muttai, Hellen ; Guyah, Bernard ; Musingila, Paul ; Achia, Thomas ; Miruka, Fredrick ; Wanjohi, Stella ; Dande, Caroline ; Musee, Polycarp ; Lugalia, Fillet ; Onyango, Dickens ; Kinywa, Eunice ; Okomo, Gordon ; Moth, Iscah ; Omondi, Samuel ; Ayieko, Caren ; Nganga, Lucy ; Joseph, Rachael H. ; Zielinski-Gutierrez, Emily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Algorithms</topic><topic>Confidence intervals</topic><topic>Demography</topic><topic>Discrimination</topic><topic>Health care facilities</topic><topic>Health Psychology</topic><topic>HIV</topic><topic>HIV Infections - diagnosis</topic><topic>HIV Infections - epidemiology</topic><topic>HIV Infections - prevention &amp; control</topic><topic>HIV Testing</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Kenya - epidemiology</topic><topic>Medical tests</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original Paper</topic><topic>Public Health</topic><topic>Risk</topic><topic>Risk Factors</topic><topic>Risk taking</topic><topic>Sociodemographics</topic><topic>Socioeconomic Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muttai, Hellen</creatorcontrib><creatorcontrib>Guyah, Bernard</creatorcontrib><creatorcontrib>Musingila, Paul</creatorcontrib><creatorcontrib>Achia, Thomas</creatorcontrib><creatorcontrib>Miruka, Fredrick</creatorcontrib><creatorcontrib>Wanjohi, Stella</creatorcontrib><creatorcontrib>Dande, Caroline</creatorcontrib><creatorcontrib>Musee, Polycarp</creatorcontrib><creatorcontrib>Lugalia, Fillet</creatorcontrib><creatorcontrib>Onyango, Dickens</creatorcontrib><creatorcontrib>Kinywa, Eunice</creatorcontrib><creatorcontrib>Okomo, Gordon</creatorcontrib><creatorcontrib>Moth, Iscah</creatorcontrib><creatorcontrib>Omondi, Samuel</creatorcontrib><creatorcontrib>Ayieko, Caren</creatorcontrib><creatorcontrib>Nganga, Lucy</creatorcontrib><creatorcontrib>Joseph, Rachael H.</creatorcontrib><creatorcontrib>Zielinski-Gutierrez, Emily</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Social Services Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Criminal Justice Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Criminology Collection</collection><collection>Sociological Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Sociology Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Criminal Justice Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest_Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AIDS and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muttai, Hellen</au><au>Guyah, Bernard</au><au>Musingila, Paul</au><au>Achia, Thomas</au><au>Miruka, Fredrick</au><au>Wanjohi, Stella</au><au>Dande, Caroline</au><au>Musee, Polycarp</au><au>Lugalia, Fillet</au><au>Onyango, Dickens</au><au>Kinywa, Eunice</au><au>Okomo, Gordon</au><au>Moth, Iscah</au><au>Omondi, Samuel</au><au>Ayieko, Caren</au><au>Nganga, Lucy</au><au>Joseph, Rachael H.</au><au>Zielinski-Gutierrez, Emily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya</atitle><jtitle>AIDS and behavior</jtitle><stitle>AIDS Behav</stitle><addtitle>AIDS Behav</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>297</spage><epage>310</epage><pages>297-310</pages><issn>1090-7165</issn><eissn>1573-3254</eissn><abstract>To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10–15, 16–29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46–0.75], 1.35% (95% CI 0.85–1.84), 2.65% (95% CI 1.8–3.51), and 15.15% (95% CI 9.03–21.27), respectively. The algorithm’s discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53–0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32651762</pmid><doi>10.1007/s10461-020-02962-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1598-6418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-7165
ispartof AIDS and behavior, 2021-02, Vol.25 (2), p.297-310
issn 1090-7165
1573-3254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846530
source Criminology Collection; Social Science Premium Collection; Sociology Collection; Springer Link; Sociological Abstracts
subjects Adult
Adults
Algorithms
Confidence intervals
Demography
Discrimination
Health care facilities
Health Psychology
HIV
HIV Infections - diagnosis
HIV Infections - epidemiology
HIV Infections - prevention & control
HIV Testing
Human immunodeficiency virus
Humans
Infectious Diseases
Kenya - epidemiology
Medical tests
Medicine
Medicine & Public Health
Original Paper
Public Health
Risk
Risk Factors
Risk taking
Sociodemographics
Socioeconomic Factors
title Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20a%20Sociodemographic%20and%20Behavioral%20Characteristics-Based%20Risk-Score%20Algorithm%20for%20Targeting%20HIV%20Testing%20Among%20Adults%20in%20Kenya&rft.jtitle=AIDS%20and%20behavior&rft.au=Muttai,%20Hellen&rft.date=2021-02-01&rft.volume=25&rft.issue=2&rft.spage=297&rft.epage=310&rft.pages=297-310&rft.issn=1090-7165&rft.eissn=1573-3254&rft_id=info:doi/10.1007/s10461-020-02962-7&rft_dat=%3Cproquest_pubme%3E2483414499%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-72cdcec3134dce16ae37127aac56c66af6e30a8b0ed9bd80609921b5b77a1feb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483414499&rft_id=info:pmid/32651762&rfr_iscdi=true