Loading…

Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus

Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventra...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-01, Vol.118 (4), p.1-10
Main Authors: Jensen, Kyle R., Berthoux, Coralie, Nasrallah, Kaoutsar, Castillo, Pablo E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3
cites cdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3
container_end_page 10
container_issue 4
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Jensen, Kyle R.
Berthoux, Coralie
Nasrallah, Kaoutsar
Castillo, Pablo E.
description Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.
doi_str_mv 10.1073/pnas.2017590118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006076</jstor_id><sourcerecordid>27006076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EoqVw5gTyC6Rdx07sXJBQxZ9UxAXOlus6ravUsewE6NvjqlDgtNLszLfaQeiSwJgApxPvVBznQHhRASHiCA0JVCQrWQXHaAiQ80ywnA3QWYxrAKgKAadoQCkrRcnEEOnnvumsbwzWyjk1t661Cxzt0qnGumVSo1YLE7FvP0yo-6bZ4th7H0yMOBjdh2Bch82ntp3qbOuwdbhbGbyy3rdabXwfz9FJrZpoLr7nCL3d371OH7PZy8PT9HaWacZEl-mFNkyQgquyyHUFwAQVrCK0AMaIqqkWlVClYUnl6TPBDCW6roxShPP5nI7QzZ7r-_nGJJrrgmqkD3ajwla2ysr_G2dXctm-y4QSJZAEmOwBOrQxBlMfsgTkrm-561v-9p0S139PHvw_BSfD1d6wjl0bDvucA5TAS_oFWGGJaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>Jensen, Kyle R. ; Berthoux, Coralie ; Nasrallah, Kaoutsar ; Castillo, Pablo E.</creator><creatorcontrib>Jensen, Kyle R. ; Berthoux, Coralie ; Nasrallah, Kaoutsar ; Castillo, Pablo E.</creatorcontrib><description>Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2017590118</identifier><identifier>PMID: 33468648</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Animals, Newborn ; Biological Sciences ; Cannabinoid Receptor Agonists - pharmacology ; Cannabinoid Receptor Antagonists - pharmacology ; Cannabinoids - pharmacology ; Dentate Gyrus - cytology ; Dentate Gyrus - drug effects ; Dentate Gyrus - metabolism ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Gene Expression ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - metabolism ; Interneurons - cytology ; Interneurons - drug effects ; Interneurons - metabolism ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Mice ; Piperidines - pharmacology ; Pyrazoles - pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 - genetics ; Receptor, Cannabinoid, CB1 - metabolism ; Synapses - drug effects ; Synapses - physiology ; Synaptic Transmission</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (4), p.1-10</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</citedby><cites>FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</cites><orcidid>0000-0002-2627-7417 ; 0000-0002-9834-1801 ; 0000-0001-7825-1166 ; 0000-0003-2780-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006076$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006076$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33468648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Kyle R.</creatorcontrib><creatorcontrib>Berthoux, Coralie</creatorcontrib><creatorcontrib>Nasrallah, Kaoutsar</creatorcontrib><creatorcontrib>Castillo, Pablo E.</creatorcontrib><title>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Sciences</subject><subject>Cannabinoid Receptor Agonists - pharmacology</subject><subject>Cannabinoid Receptor Antagonists - pharmacology</subject><subject>Cannabinoids - pharmacology</subject><subject>Dentate Gyrus - cytology</subject><subject>Dentate Gyrus - drug effects</subject><subject>Dentate Gyrus - metabolism</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Gene Expression</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Interneurons - cytology</subject><subject>Interneurons - drug effects</subject><subject>Interneurons - metabolism</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Mice</subject><subject>Piperidines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Cannabinoid, CB1 - genetics</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhC0EoqVw5gTyC6Rdx07sXJBQxZ9UxAXOlus6ravUsewE6NvjqlDgtNLszLfaQeiSwJgApxPvVBznQHhRASHiCA0JVCQrWQXHaAiQ80ywnA3QWYxrAKgKAadoQCkrRcnEEOnnvumsbwzWyjk1t661Cxzt0qnGumVSo1YLE7FvP0yo-6bZ4th7H0yMOBjdh2Bch82ntp3qbOuwdbhbGbyy3rdabXwfz9FJrZpoLr7nCL3d371OH7PZy8PT9HaWacZEl-mFNkyQgquyyHUFwAQVrCK0AMaIqqkWlVClYUnl6TPBDCW6roxShPP5nI7QzZ7r-_nGJJrrgmqkD3ajwla2ysr_G2dXctm-y4QSJZAEmOwBOrQxBlMfsgTkrm-561v-9p0S139PHvw_BSfD1d6wjl0bDvucA5TAS_oFWGGJaQ</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Jensen, Kyle R.</creator><creator>Berthoux, Coralie</creator><creator>Nasrallah, Kaoutsar</creator><creator>Castillo, Pablo E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2627-7417</orcidid><orcidid>https://orcid.org/0000-0002-9834-1801</orcidid><orcidid>https://orcid.org/0000-0001-7825-1166</orcidid><orcidid>https://orcid.org/0000-0003-2780-6138</orcidid></search><sort><creationdate>20210126</creationdate><title>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</title><author>Jensen, Kyle R. ; Berthoux, Coralie ; Nasrallah, Kaoutsar ; Castillo, Pablo E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Sciences</topic><topic>Cannabinoid Receptor Agonists - pharmacology</topic><topic>Cannabinoid Receptor Antagonists - pharmacology</topic><topic>Cannabinoids - pharmacology</topic><topic>Dentate Gyrus - cytology</topic><topic>Dentate Gyrus - drug effects</topic><topic>Dentate Gyrus - metabolism</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Gene Expression</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Interneurons - cytology</topic><topic>Interneurons - drug effects</topic><topic>Interneurons - metabolism</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Mice</topic><topic>Piperidines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Cannabinoid, CB1 - genetics</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Kyle R.</creatorcontrib><creatorcontrib>Berthoux, Coralie</creatorcontrib><creatorcontrib>Nasrallah, Kaoutsar</creatorcontrib><creatorcontrib>Castillo, Pablo E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Kyle R.</au><au>Berthoux, Coralie</au><au>Nasrallah, Kaoutsar</au><au>Castillo, Pablo E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>118</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33468648</pmid><doi>10.1073/pnas.2017590118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2627-7417</orcidid><orcidid>https://orcid.org/0000-0002-9834-1801</orcidid><orcidid>https://orcid.org/0000-0001-7825-1166</orcidid><orcidid>https://orcid.org/0000-0003-2780-6138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (4), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848601
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Animals, Newborn
Biological Sciences
Cannabinoid Receptor Agonists - pharmacology
Cannabinoid Receptor Antagonists - pharmacology
Cannabinoids - pharmacology
Dentate Gyrus - cytology
Dentate Gyrus - drug effects
Dentate Gyrus - metabolism
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
Gene Expression
Hippocampus - cytology
Hippocampus - drug effects
Hippocampus - metabolism
Interneurons - cytology
Interneurons - drug effects
Interneurons - metabolism
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
Mice
Piperidines - pharmacology
Pyrazoles - pharmacology
Rats
Rats, Sprague-Dawley
Receptor, Cannabinoid, CB1 - genetics
Receptor, Cannabinoid, CB1 - metabolism
Synapses - drug effects
Synapses - physiology
Synaptic Transmission
title Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20cannabinoid%20signaling%20cascades%20powerfully%20suppress%20recurrent%20excitation%20in%20the%20hippocampus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jensen,%20Kyle%20R.&rft.date=2021-01-26&rft.volume=118&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2017590118&rft_dat=%3Cjstor_pubme%3E27006076%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33468648&rft_jstor_id=27006076&rfr_iscdi=true