Loading…
Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus
Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventra...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-01, Vol.118 (4), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3 |
container_end_page | 10 |
container_issue | 4 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Jensen, Kyle R. Berthoux, Coralie Nasrallah, Kaoutsar Castillo, Pablo E. |
description | Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation. |
doi_str_mv | 10.1073/pnas.2017590118 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006076</jstor_id><sourcerecordid>27006076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EoqVw5gTyC6Rdx07sXJBQxZ9UxAXOlus6ravUsewE6NvjqlDgtNLszLfaQeiSwJgApxPvVBznQHhRASHiCA0JVCQrWQXHaAiQ80ywnA3QWYxrAKgKAadoQCkrRcnEEOnnvumsbwzWyjk1t661Cxzt0qnGumVSo1YLE7FvP0yo-6bZ4th7H0yMOBjdh2Bch82ntp3qbOuwdbhbGbyy3rdabXwfz9FJrZpoLr7nCL3d371OH7PZy8PT9HaWacZEl-mFNkyQgquyyHUFwAQVrCK0AMaIqqkWlVClYUnl6TPBDCW6roxShPP5nI7QzZ7r-_nGJJrrgmqkD3ajwla2ysr_G2dXctm-y4QSJZAEmOwBOrQxBlMfsgTkrm-561v-9p0S139PHvw_BSfD1d6wjl0bDvucA5TAS_oFWGGJaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>Jensen, Kyle R. ; Berthoux, Coralie ; Nasrallah, Kaoutsar ; Castillo, Pablo E.</creator><creatorcontrib>Jensen, Kyle R. ; Berthoux, Coralie ; Nasrallah, Kaoutsar ; Castillo, Pablo E.</creatorcontrib><description>Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2017590118</identifier><identifier>PMID: 33468648</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Animals, Newborn ; Biological Sciences ; Cannabinoid Receptor Agonists - pharmacology ; Cannabinoid Receptor Antagonists - pharmacology ; Cannabinoids - pharmacology ; Dentate Gyrus - cytology ; Dentate Gyrus - drug effects ; Dentate Gyrus - metabolism ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Gene Expression ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - metabolism ; Interneurons - cytology ; Interneurons - drug effects ; Interneurons - metabolism ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Mice ; Piperidines - pharmacology ; Pyrazoles - pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 - genetics ; Receptor, Cannabinoid, CB1 - metabolism ; Synapses - drug effects ; Synapses - physiology ; Synaptic Transmission</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (4), p.1-10</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</citedby><cites>FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</cites><orcidid>0000-0002-2627-7417 ; 0000-0002-9834-1801 ; 0000-0001-7825-1166 ; 0000-0003-2780-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006076$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006076$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33468648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Kyle R.</creatorcontrib><creatorcontrib>Berthoux, Coralie</creatorcontrib><creatorcontrib>Nasrallah, Kaoutsar</creatorcontrib><creatorcontrib>Castillo, Pablo E.</creatorcontrib><title>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Sciences</subject><subject>Cannabinoid Receptor Agonists - pharmacology</subject><subject>Cannabinoid Receptor Antagonists - pharmacology</subject><subject>Cannabinoids - pharmacology</subject><subject>Dentate Gyrus - cytology</subject><subject>Dentate Gyrus - drug effects</subject><subject>Dentate Gyrus - metabolism</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Gene Expression</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Interneurons - cytology</subject><subject>Interneurons - drug effects</subject><subject>Interneurons - metabolism</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Mice</subject><subject>Piperidines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Cannabinoid, CB1 - genetics</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhC0EoqVw5gTyC6Rdx07sXJBQxZ9UxAXOlus6ravUsewE6NvjqlDgtNLszLfaQeiSwJgApxPvVBznQHhRASHiCA0JVCQrWQXHaAiQ80ywnA3QWYxrAKgKAadoQCkrRcnEEOnnvumsbwzWyjk1t661Cxzt0qnGumVSo1YLE7FvP0yo-6bZ4th7H0yMOBjdh2Bch82ntp3qbOuwdbhbGbyy3rdabXwfz9FJrZpoLr7nCL3d371OH7PZy8PT9HaWacZEl-mFNkyQgquyyHUFwAQVrCK0AMaIqqkWlVClYUnl6TPBDCW6roxShPP5nI7QzZ7r-_nGJJrrgmqkD3ajwla2ysr_G2dXctm-y4QSJZAEmOwBOrQxBlMfsgTkrm-561v-9p0S139PHvw_BSfD1d6wjl0bDvucA5TAS_oFWGGJaQ</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Jensen, Kyle R.</creator><creator>Berthoux, Coralie</creator><creator>Nasrallah, Kaoutsar</creator><creator>Castillo, Pablo E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2627-7417</orcidid><orcidid>https://orcid.org/0000-0002-9834-1801</orcidid><orcidid>https://orcid.org/0000-0001-7825-1166</orcidid><orcidid>https://orcid.org/0000-0003-2780-6138</orcidid></search><sort><creationdate>20210126</creationdate><title>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</title><author>Jensen, Kyle R. ; Berthoux, Coralie ; Nasrallah, Kaoutsar ; Castillo, Pablo E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Sciences</topic><topic>Cannabinoid Receptor Agonists - pharmacology</topic><topic>Cannabinoid Receptor Antagonists - pharmacology</topic><topic>Cannabinoids - pharmacology</topic><topic>Dentate Gyrus - cytology</topic><topic>Dentate Gyrus - drug effects</topic><topic>Dentate Gyrus - metabolism</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Gene Expression</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Interneurons - cytology</topic><topic>Interneurons - drug effects</topic><topic>Interneurons - metabolism</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Mice</topic><topic>Piperidines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Cannabinoid, CB1 - genetics</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Kyle R.</creatorcontrib><creatorcontrib>Berthoux, Coralie</creatorcontrib><creatorcontrib>Nasrallah, Kaoutsar</creatorcontrib><creatorcontrib>Castillo, Pablo E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Kyle R.</au><au>Berthoux, Coralie</au><au>Nasrallah, Kaoutsar</au><au>Castillo, Pablo E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>118</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recurrent excitatory neural networks are unstable. In the hippocampus, excitatory mossy cells (MCs) receive strong excitatory inputs from dentate granule cells (GCs) and project back onto the proximal dendrites of GCs. By targeting the ipsi- and contralateral dentate gyrus (DG) along the dorsoventral axis of the hippocampus, MCs form an extensive recurrent excitatory circuit (GC-MC-GC) whose dysregulation can promote epilepsy. We recently reported that a physiologically relevant pattern of MC activity induces a robust form of presynaptic long-term potentiation (LTP) of MC-GC transmission which enhances GC output. Left unchecked, this LTP may interfere with DG-dependent learning, like pattern separation—which relies on sparse GC firing—and may even facilitate epileptic activity. Intriguingly, MC axons display uniquely high expression levels of type-1 cannabinoid receptors (CB1Rs), but their role at MC-GC synapses is poorly understood. Using rodent hippocampal slices, we report that constitutively active CB1Rs, presumably via βγ subunits, selectively inhibited MC inputs onto GCs but not MC inputs onto inhibitory interneurons or CB1R-sensitive inhibitory inputs onto GCs. Tonic CB1R activity also inhibited LTP and GC output. Furthermore, brief endocannabinoid release from GCs dampened MC-GC LTP in two mechanistically distinct ways: during induction via βγ signaling and before induction via αi/o signaling in a form of presynaptic metaplasticity. Lastly, a single in vivo exposure to exogenous cannabinoids was sufficient to induce this presynaptic metaplasticity. By dampening excitatory transmission and plasticity, tonic and phasic CB1R activity at MC axon terminals may preserve the sparse nature of the DG and protect against runaway excitation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33468648</pmid><doi>10.1073/pnas.2017590118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2627-7417</orcidid><orcidid>https://orcid.org/0000-0002-9834-1801</orcidid><orcidid>https://orcid.org/0000-0001-7825-1166</orcidid><orcidid>https://orcid.org/0000-0003-2780-6138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (4), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848601 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central |
subjects | Action Potentials - drug effects Action Potentials - physiology Animals Animals, Newborn Biological Sciences Cannabinoid Receptor Agonists - pharmacology Cannabinoid Receptor Antagonists - pharmacology Cannabinoids - pharmacology Dentate Gyrus - cytology Dentate Gyrus - drug effects Dentate Gyrus - metabolism Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - physiology Gene Expression Hippocampus - cytology Hippocampus - drug effects Hippocampus - metabolism Interneurons - cytology Interneurons - drug effects Interneurons - metabolism Long-Term Potentiation - drug effects Long-Term Potentiation - physiology Mice Piperidines - pharmacology Pyrazoles - pharmacology Rats Rats, Sprague-Dawley Receptor, Cannabinoid, CB1 - genetics Receptor, Cannabinoid, CB1 - metabolism Synapses - drug effects Synapses - physiology Synaptic Transmission |
title | Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20cannabinoid%20signaling%20cascades%20powerfully%20suppress%20recurrent%20excitation%20in%20the%20hippocampus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jensen,%20Kyle%20R.&rft.date=2021-01-26&rft.volume=118&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2017590118&rft_dat=%3Cjstor_pubme%3E27006076%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-cdce48157a652c9004838491350441af3c898a6e4384702784e31cf9eaa177bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33468648&rft_jstor_id=27006076&rfr_iscdi=true |