Loading…

The complement cascade at the Utah microelectrode-tissue interface

Devices implanted within the central nervous system (CNS) are subjected to tissue reactivity due to the lack of biocompatibility between implanted material and the cells’ microenvironment. Studies have attributed blood-brain barrier disruption, inflammation, and oxidative stress as main contributing...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2021-01, Vol.268, p.120583-120583, Article 120583
Main Authors: Bennett, Cassie, Álvarez-Ciara, Anabel, Franklin, Melissa, Dietrich, W. Dalton, Prasad, Abhishek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Devices implanted within the central nervous system (CNS) are subjected to tissue reactivity due to the lack of biocompatibility between implanted material and the cells’ microenvironment. Studies have attributed blood-brain barrier disruption, inflammation, and oxidative stress as main contributing factors that lead to electrode recording failure. The complement cascade is a part of the innate immunity that focuses on recognizing and targeting foreign objects; however, its role in the context of neural implants is substantially unknown. In this study, we implanted a non-functional 4x4 Utah microelectrode array (UEA) into the somatosensory cortex and studied the complement cascade via combined gene and immunohistochemistry quantification at acute (48-h), sub-acute (1-week), and early chronic (4-weeks) time points. The results of this study demonstrate the activation and continuation of the complement cascade at the electrode-tissue interface, illustrating the therapeutic potential of modulating the foreign body response via the complement cascade.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2020.120583