Loading…

Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells

Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2020-12, Vol.295 (49), p.16510-16528
Main Authors: Arous, Caroline, Mizgier, Maria Luisa, Rickenbach, Katharina, Pinget, Michel, Bouzakri, Karim, Wehrle-Haller, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33
cites cdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33
container_end_page 16528
container_issue 49
container_start_page 16510
container_title The Journal of biological chemistry
container_volume 295
creator Arous, Caroline
Mizgier, Maria Luisa
Rickenbach, Katharina
Pinget, Michel
Bouzakri, Karim
Wehrle-Haller, Bernhard
description Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.
doi_str_mv 10.1074/jbc.RA120.012957
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581750472X</els_id><sourcerecordid>2443521118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</originalsourceid><addsrcrecordid>eNp1UcGKFDEQDaK44-rdk_RRDz1WJenutAdhWNzdgQFhUfAWknR6JktPMibdI_tbfojfZMZeFxXMpcjLey9V9Qh5ibBEaPjbW22WNyuksASkbdU8IgsEwUpW4ZfHZAFAsWxpJc7Is5RuIR_e4lNyxmjLOEC1IDdrP9ptdL5QvivUNAaTL7ZYX13S4qDG3Td1lwoT_BjDUPQqjc5vC-fTNGRNsiba0QWfkeLH99LYYUjPyZNeDcm-uK_n5PPlh08X1-Xm49X6YrUpDRc4lkzo3FpjGG2aqta6RtVYbAXQvlO9zqgFJkSnoeIWDXKqeEN1DaBRacPYOXk_-x4mvbedsblHNchDdHsV72RQTv794t1ObsNRNqLmUJ0M3swGu39k16uNPGHAalFhDUfM3Nf3n8XwdbJplHuXTuMqb8OUJOWcVRQRRabCTDUxpBRt_-CNIE-xyRyb_BWbnGPLkld_jvIg-J1TJrybCTYv9OhslMk4643tXLRmlF1w_3f_CdDvp7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443521118</pqid></control><display><type>article</type><title>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Arous, Caroline ; Mizgier, Maria Luisa ; Rickenbach, Katharina ; Pinget, Michel ; Bouzakri, Karim ; Wehrle-Haller, Bernhard</creator><creatorcontrib>Arous, Caroline ; Mizgier, Maria Luisa ; Rickenbach, Katharina ; Pinget, Michel ; Bouzakri, Karim ; Wehrle-Haller, Bernhard</creatorcontrib><description>Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.012957</identifier><identifier>PMID: 32934005</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - metabolism ; AKT isoform ; Akt PKB ; Animals ; Autocrine Communication ; beta cell (B-cell) ; Cell Adhesion - drug effects ; Cell Biology ; Cellular Biology ; Focal Adhesion Kinase 1 - metabolism ; Glucose - pharmacology ; IGF1 receptor signaling ; IGF2 ; insulin ; insulin receptor signaling ; insulin secretion ; Insulin Secretion - drug effects ; insulin-like growth factor (IGF) ; Insulin-Like Growth Factor II - metabolism ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; insulin/insulin-like growth factor 1 (IGF1)-receptor signaling ; integrin ; Integrins - metabolism ; Life Sciences ; Mice ; Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Receptor, Insulin - metabolism ; rho-Associated Kinases - metabolism ; rhoA GTP-Binding Protein - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Signal Transduction - drug effects ; Tyrphostins - pharmacology</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (49), p.16510-16528</ispartof><rights>2020 © 2020 Arous et al.</rights><rights>2020 Arous et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 © 2020 Arous et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</citedby><cites>FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</cites><orcidid>0000-0002-0677-8767 ; 0000-0002-1159-1147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864053/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002192581750472X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32934005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03685160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arous, Caroline</creatorcontrib><creatorcontrib>Mizgier, Maria Luisa</creatorcontrib><creatorcontrib>Rickenbach, Katharina</creatorcontrib><creatorcontrib>Pinget, Michel</creatorcontrib><creatorcontrib>Bouzakri, Karim</creatorcontrib><creatorcontrib>Wehrle-Haller, Bernhard</creatorcontrib><title>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.</description><subject>Actins - metabolism</subject><subject>AKT isoform</subject><subject>Akt PKB</subject><subject>Animals</subject><subject>Autocrine Communication</subject><subject>beta cell (B-cell)</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Biology</subject><subject>Cellular Biology</subject><subject>Focal Adhesion Kinase 1 - metabolism</subject><subject>Glucose - pharmacology</subject><subject>IGF1 receptor signaling</subject><subject>IGF2</subject><subject>insulin</subject><subject>insulin receptor signaling</subject><subject>insulin secretion</subject><subject>Insulin Secretion - drug effects</subject><subject>insulin-like growth factor (IGF)</subject><subject>Insulin-Like Growth Factor II - metabolism</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>insulin/insulin-like growth factor 1 (IGF1)-receptor signaling</subject><subject>integrin</subject><subject>Integrins - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Receptor, Insulin - metabolism</subject><subject>rho-Associated Kinases - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Tyrphostins - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UcGKFDEQDaK44-rdk_RRDz1WJenutAdhWNzdgQFhUfAWknR6JktPMibdI_tbfojfZMZeFxXMpcjLey9V9Qh5ibBEaPjbW22WNyuksASkbdU8IgsEwUpW4ZfHZAFAsWxpJc7Is5RuIR_e4lNyxmjLOEC1IDdrP9ptdL5QvivUNAaTL7ZYX13S4qDG3Td1lwoT_BjDUPQqjc5vC-fTNGRNsiba0QWfkeLH99LYYUjPyZNeDcm-uK_n5PPlh08X1-Xm49X6YrUpDRc4lkzo3FpjGG2aqta6RtVYbAXQvlO9zqgFJkSnoeIWDXKqeEN1DaBRacPYOXk_-x4mvbedsblHNchDdHsV72RQTv794t1ObsNRNqLmUJ0M3swGu39k16uNPGHAalFhDUfM3Nf3n8XwdbJplHuXTuMqb8OUJOWcVRQRRabCTDUxpBRt_-CNIE-xyRyb_BWbnGPLkld_jvIg-J1TJrybCTYv9OhslMk4643tXLRmlF1w_3f_CdDvp7k</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>Arous, Caroline</creator><creator>Mizgier, Maria Luisa</creator><creator>Rickenbach, Katharina</creator><creator>Pinget, Michel</creator><creator>Bouzakri, Karim</creator><creator>Wehrle-Haller, Bernhard</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0677-8767</orcidid><orcidid>https://orcid.org/0000-0002-1159-1147</orcidid></search><sort><creationdate>20201204</creationdate><title>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</title><author>Arous, Caroline ; Mizgier, Maria Luisa ; Rickenbach, Katharina ; Pinget, Michel ; Bouzakri, Karim ; Wehrle-Haller, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actins - metabolism</topic><topic>AKT isoform</topic><topic>Akt PKB</topic><topic>Animals</topic><topic>Autocrine Communication</topic><topic>beta cell (B-cell)</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Biology</topic><topic>Cellular Biology</topic><topic>Focal Adhesion Kinase 1 - metabolism</topic><topic>Glucose - pharmacology</topic><topic>IGF1 receptor signaling</topic><topic>IGF2</topic><topic>insulin</topic><topic>insulin receptor signaling</topic><topic>insulin secretion</topic><topic>Insulin Secretion - drug effects</topic><topic>insulin-like growth factor (IGF)</topic><topic>Insulin-Like Growth Factor II - metabolism</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>insulin/insulin-like growth factor 1 (IGF1)-receptor signaling</topic><topic>integrin</topic><topic>Integrins - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Receptor, Insulin - metabolism</topic><topic>rho-Associated Kinases - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Tyrphostins - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arous, Caroline</creatorcontrib><creatorcontrib>Mizgier, Maria Luisa</creatorcontrib><creatorcontrib>Rickenbach, Katharina</creatorcontrib><creatorcontrib>Pinget, Michel</creatorcontrib><creatorcontrib>Bouzakri, Karim</creatorcontrib><creatorcontrib>Wehrle-Haller, Bernhard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arous, Caroline</au><au>Mizgier, Maria Luisa</au><au>Rickenbach, Katharina</au><au>Pinget, Michel</au><au>Bouzakri, Karim</au><au>Wehrle-Haller, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-04</date><risdate>2020</risdate><volume>295</volume><issue>49</issue><spage>16510</spage><epage>16528</epage><pages>16510-16528</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32934005</pmid><doi>10.1074/jbc.RA120.012957</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0677-8767</orcidid><orcidid>https://orcid.org/0000-0002-1159-1147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-12, Vol.295 (49), p.16510-16528
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864053
source ScienceDirect; PubMed Central
subjects Actins - metabolism
AKT isoform
Akt PKB
Animals
Autocrine Communication
beta cell (B-cell)
Cell Adhesion - drug effects
Cell Biology
Cellular Biology
Focal Adhesion Kinase 1 - metabolism
Glucose - pharmacology
IGF1 receptor signaling
IGF2
insulin
insulin receptor signaling
insulin secretion
Insulin Secretion - drug effects
insulin-like growth factor (IGF)
Insulin-Like Growth Factor II - metabolism
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - metabolism
insulin/insulin-like growth factor 1 (IGF1)-receptor signaling
integrin
Integrins - metabolism
Life Sciences
Mice
Proto-Oncogene Proteins c-akt - antagonists & inhibitors
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Rats
Receptor, Insulin - metabolism
rho-Associated Kinases - metabolism
rhoA GTP-Binding Protein - metabolism
RNA Interference
RNA, Small Interfering - metabolism
Signal Transduction - drug effects
Tyrphostins - pharmacology
title Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrin%20and%20autocrine%20IGF2%20pathways%20control%20fasting%20insulin%20secretion%20in%20%CE%B2-cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Arous,%20Caroline&rft.date=2020-12-04&rft.volume=295&rft.issue=49&rft.spage=16510&rft.epage=16528&rft.pages=16510-16528&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.012957&rft_dat=%3Cproquest_pubme%3E2443521118%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443521118&rft_id=info:pmid/32934005&rfr_iscdi=true