Loading…
Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells
Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of...
Saved in:
Published in: | The Journal of biological chemistry 2020-12, Vol.295 (49), p.16510-16528 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33 |
container_end_page | 16528 |
container_issue | 49 |
container_start_page | 16510 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Arous, Caroline Mizgier, Maria Luisa Rickenbach, Katharina Pinget, Michel Bouzakri, Karim Wehrle-Haller, Bernhard |
description | Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes. |
doi_str_mv | 10.1074/jbc.RA120.012957 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581750472X</els_id><sourcerecordid>2443521118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</originalsourceid><addsrcrecordid>eNp1UcGKFDEQDaK44-rdk_RRDz1WJenutAdhWNzdgQFhUfAWknR6JktPMibdI_tbfojfZMZeFxXMpcjLey9V9Qh5ibBEaPjbW22WNyuksASkbdU8IgsEwUpW4ZfHZAFAsWxpJc7Is5RuIR_e4lNyxmjLOEC1IDdrP9ptdL5QvivUNAaTL7ZYX13S4qDG3Td1lwoT_BjDUPQqjc5vC-fTNGRNsiba0QWfkeLH99LYYUjPyZNeDcm-uK_n5PPlh08X1-Xm49X6YrUpDRc4lkzo3FpjGG2aqta6RtVYbAXQvlO9zqgFJkSnoeIWDXKqeEN1DaBRacPYOXk_-x4mvbedsblHNchDdHsV72RQTv794t1ObsNRNqLmUJ0M3swGu39k16uNPGHAalFhDUfM3Nf3n8XwdbJplHuXTuMqb8OUJOWcVRQRRabCTDUxpBRt_-CNIE-xyRyb_BWbnGPLkld_jvIg-J1TJrybCTYv9OhslMk4643tXLRmlF1w_3f_CdDvp7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443521118</pqid></control><display><type>article</type><title>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Arous, Caroline ; Mizgier, Maria Luisa ; Rickenbach, Katharina ; Pinget, Michel ; Bouzakri, Karim ; Wehrle-Haller, Bernhard</creator><creatorcontrib>Arous, Caroline ; Mizgier, Maria Luisa ; Rickenbach, Katharina ; Pinget, Michel ; Bouzakri, Karim ; Wehrle-Haller, Bernhard</creatorcontrib><description>Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.012957</identifier><identifier>PMID: 32934005</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - metabolism ; AKT isoform ; Akt PKB ; Animals ; Autocrine Communication ; beta cell (B-cell) ; Cell Adhesion - drug effects ; Cell Biology ; Cellular Biology ; Focal Adhesion Kinase 1 - metabolism ; Glucose - pharmacology ; IGF1 receptor signaling ; IGF2 ; insulin ; insulin receptor signaling ; insulin secretion ; Insulin Secretion - drug effects ; insulin-like growth factor (IGF) ; Insulin-Like Growth Factor II - metabolism ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; insulin/insulin-like growth factor 1 (IGF1)-receptor signaling ; integrin ; Integrins - metabolism ; Life Sciences ; Mice ; Proto-Oncogene Proteins c-akt - antagonists & inhibitors ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Receptor, Insulin - metabolism ; rho-Associated Kinases - metabolism ; rhoA GTP-Binding Protein - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Signal Transduction - drug effects ; Tyrphostins - pharmacology</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (49), p.16510-16528</ispartof><rights>2020 © 2020 Arous et al.</rights><rights>2020 Arous et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 © 2020 Arous et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</citedby><cites>FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</cites><orcidid>0000-0002-0677-8767 ; 0000-0002-1159-1147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864053/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002192581750472X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32934005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03685160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arous, Caroline</creatorcontrib><creatorcontrib>Mizgier, Maria Luisa</creatorcontrib><creatorcontrib>Rickenbach, Katharina</creatorcontrib><creatorcontrib>Pinget, Michel</creatorcontrib><creatorcontrib>Bouzakri, Karim</creatorcontrib><creatorcontrib>Wehrle-Haller, Bernhard</creatorcontrib><title>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.</description><subject>Actins - metabolism</subject><subject>AKT isoform</subject><subject>Akt PKB</subject><subject>Animals</subject><subject>Autocrine Communication</subject><subject>beta cell (B-cell)</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Biology</subject><subject>Cellular Biology</subject><subject>Focal Adhesion Kinase 1 - metabolism</subject><subject>Glucose - pharmacology</subject><subject>IGF1 receptor signaling</subject><subject>IGF2</subject><subject>insulin</subject><subject>insulin receptor signaling</subject><subject>insulin secretion</subject><subject>Insulin Secretion - drug effects</subject><subject>insulin-like growth factor (IGF)</subject><subject>Insulin-Like Growth Factor II - metabolism</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>insulin/insulin-like growth factor 1 (IGF1)-receptor signaling</subject><subject>integrin</subject><subject>Integrins - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Proto-Oncogene Proteins c-akt - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Receptor, Insulin - metabolism</subject><subject>rho-Associated Kinases - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Tyrphostins - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UcGKFDEQDaK44-rdk_RRDz1WJenutAdhWNzdgQFhUfAWknR6JktPMibdI_tbfojfZMZeFxXMpcjLey9V9Qh5ibBEaPjbW22WNyuksASkbdU8IgsEwUpW4ZfHZAFAsWxpJc7Is5RuIR_e4lNyxmjLOEC1IDdrP9ptdL5QvivUNAaTL7ZYX13S4qDG3Td1lwoT_BjDUPQqjc5vC-fTNGRNsiba0QWfkeLH99LYYUjPyZNeDcm-uK_n5PPlh08X1-Xm49X6YrUpDRc4lkzo3FpjGG2aqta6RtVYbAXQvlO9zqgFJkSnoeIWDXKqeEN1DaBRacPYOXk_-x4mvbedsblHNchDdHsV72RQTv794t1ObsNRNqLmUJ0M3swGu39k16uNPGHAalFhDUfM3Nf3n8XwdbJplHuXTuMqb8OUJOWcVRQRRabCTDUxpBRt_-CNIE-xyRyb_BWbnGPLkld_jvIg-J1TJrybCTYv9OhslMk4643tXLRmlF1w_3f_CdDvp7k</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>Arous, Caroline</creator><creator>Mizgier, Maria Luisa</creator><creator>Rickenbach, Katharina</creator><creator>Pinget, Michel</creator><creator>Bouzakri, Karim</creator><creator>Wehrle-Haller, Bernhard</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0677-8767</orcidid><orcidid>https://orcid.org/0000-0002-1159-1147</orcidid></search><sort><creationdate>20201204</creationdate><title>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</title><author>Arous, Caroline ; Mizgier, Maria Luisa ; Rickenbach, Katharina ; Pinget, Michel ; Bouzakri, Karim ; Wehrle-Haller, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actins - metabolism</topic><topic>AKT isoform</topic><topic>Akt PKB</topic><topic>Animals</topic><topic>Autocrine Communication</topic><topic>beta cell (B-cell)</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Biology</topic><topic>Cellular Biology</topic><topic>Focal Adhesion Kinase 1 - metabolism</topic><topic>Glucose - pharmacology</topic><topic>IGF1 receptor signaling</topic><topic>IGF2</topic><topic>insulin</topic><topic>insulin receptor signaling</topic><topic>insulin secretion</topic><topic>Insulin Secretion - drug effects</topic><topic>insulin-like growth factor (IGF)</topic><topic>Insulin-Like Growth Factor II - metabolism</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>insulin/insulin-like growth factor 1 (IGF1)-receptor signaling</topic><topic>integrin</topic><topic>Integrins - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Proto-Oncogene Proteins c-akt - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Receptor, Insulin - metabolism</topic><topic>rho-Associated Kinases - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Tyrphostins - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arous, Caroline</creatorcontrib><creatorcontrib>Mizgier, Maria Luisa</creatorcontrib><creatorcontrib>Rickenbach, Katharina</creatorcontrib><creatorcontrib>Pinget, Michel</creatorcontrib><creatorcontrib>Bouzakri, Karim</creatorcontrib><creatorcontrib>Wehrle-Haller, Bernhard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arous, Caroline</au><au>Mizgier, Maria Luisa</au><au>Rickenbach, Katharina</au><au>Pinget, Michel</au><au>Bouzakri, Karim</au><au>Wehrle-Haller, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-04</date><risdate>2020</risdate><volume>295</volume><issue>49</issue><spage>16510</spage><epage>16528</epage><pages>16510-16528</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32934005</pmid><doi>10.1074/jbc.RA120.012957</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0677-8767</orcidid><orcidid>https://orcid.org/0000-0002-1159-1147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-12, Vol.295 (49), p.16510-16528 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864053 |
source | ScienceDirect; PubMed Central |
subjects | Actins - metabolism AKT isoform Akt PKB Animals Autocrine Communication beta cell (B-cell) Cell Adhesion - drug effects Cell Biology Cellular Biology Focal Adhesion Kinase 1 - metabolism Glucose - pharmacology IGF1 receptor signaling IGF2 insulin insulin receptor signaling insulin secretion Insulin Secretion - drug effects insulin-like growth factor (IGF) Insulin-Like Growth Factor II - metabolism Insulin-Secreting Cells - cytology Insulin-Secreting Cells - metabolism insulin/insulin-like growth factor 1 (IGF1)-receptor signaling integrin Integrins - metabolism Life Sciences Mice Proto-Oncogene Proteins c-akt - antagonists & inhibitors Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Rats Receptor, Insulin - metabolism rho-Associated Kinases - metabolism rhoA GTP-Binding Protein - metabolism RNA Interference RNA, Small Interfering - metabolism Signal Transduction - drug effects Tyrphostins - pharmacology |
title | Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrin%20and%20autocrine%20IGF2%20pathways%20control%20fasting%20insulin%20secretion%20in%20%CE%B2-cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Arous,%20Caroline&rft.date=2020-12-04&rft.volume=295&rft.issue=49&rft.spage=16510&rft.epage=16528&rft.pages=16510-16528&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.012957&rft_dat=%3Cproquest_pubme%3E2443521118%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-38b9257c327756bb61a7e19802fdafb277e0388db054e1c142a472b600b1abc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443521118&rft_id=info:pmid/32934005&rfr_iscdi=true |