Loading…
Establishment of a CoMFA Model Based on the Combined Activity of Bioconcentration, Long-Range Transport, and Highest Infrared Signal Intensity and Molecular Design of Environmentally Friendly PBB Derivatives
In the current study, a comparative molecular field analysis (CoMFA) model with the combined activity of polybrominated biphenyls (PBBs) bioconcentration, long-range transport, and the highest infrared signal intensity (weight ratio of 5:4:1) was constructed based on the threshold method and was fur...
Saved in:
Published in: | Polymers 2021-01, Vol.13 (3), p.356 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the current study, a comparative molecular field analysis (CoMFA) model with the combined activity of polybrominated biphenyls (PBBs) bioconcentration, long-range transport, and the highest infrared signal intensity (weight ratio of 5:4:1) was constructed based on the threshold method and was further evaluated and analyzed. PBB-153 derivatives with improved combined activity values of bioconcentration, long-range transport, and the highest infrared signals intensity were designed based on contour maps of the CoMFA model. The environmental stability and functionality of the derivatives were also evaluated. The constructed model showed good prediction ability, fitting ability, stability, and external prediction ability. The contribution rates of electrostatic and steric fields to the combined activity of PBBs were 53.4% and 46.6%, respectively. Four PBB-153 derivatives with significantly improved bioconcentration, long-range transport and the highest infrared signal intensity (the combined activity value of these three parameters decreased) were screened with good environmental stability and functionality. Results validated the accuracy and reliability, and ability of the generated model to realize the simultaneous modification of the three activities of the target molecule. The binding ability of the designed derivatives to food chain biodegradation enzymes increased, thereby verifying the improvement in the bioconcentration. The half-lives of the derivatives in air and their ability to be absorbed by the plants significantly improved compared to the target molecule, further showing that the long-range transport of derivatives was reduced. In addition, the introduction of the -NO group caused the N =O stretching vibration of the derivatives to increase the infrared signal intensity. The present model provides a theoretical design method for the molecular modification of environmentally friendly PBBs. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym13030356 |