Loading…
Facile Synthesis of Spherical TiO2 Hollow Nanospheres with a Diameter of 150 nm for High-Performance Mesoporous Perovskite Solar Cells
The electron transport layer (ETL) of organic–inorganic perovskite solar cells plays an important role in their power conversion efficiency (PCE). In this study, TiO2 hollow nanospheres with a diameter of 150 nm were prepared by a facile synthesis method. The synthesized TiO2 hollow nanospheres had...
Saved in:
Published in: | Materials 2021-01, Vol.14 (3), p.629 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electron transport layer (ETL) of organic–inorganic perovskite solar cells plays an important role in their power conversion efficiency (PCE). In this study, TiO2 hollow nanospheres with a diameter of 150 nm were prepared by a facile synthesis method. The synthesized TiO2 hollow nanospheres had a highly porous structure with a surface area of 85.23 m2 g−1, which is significantly higher than commercial TiO2 (P25) (54.32 m2 g−1), indicating that they can form an ideal mesoporous layer for Formamidinium iodide-based perovskite solar cells (PSCs). In addition, the nanospheres achieved a remarkable perovskite performance, and the average PCE increased from 12.87% to 14.27% with a short circuit current density of 22.36 mAcm−2, an open voltage of 0.95 V, and a fill factor of 0.65. The scanning electron microscopy images revealed that the enhanced PCE could be due to the improved carrier collection and transport properties of the nanosphere, which enabled efficient filtration of perovskite into the TiO2 mesoporous ETL. The TiO2 hollow nanospheres fabricated in this study show high potential as a high-quality ETL material for efficient (FAPbI3)0.97(MAPbBr3)0.03-based PSCs. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14030629 |