Loading…

Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique

X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-02, Vol.14 (3), p.695
Main Authors: Chen, Xuewen, Du, Kexue, Du, Yuqing, Lian, Tingting, Liu, Jiqi, Bai, Rongren, Li, Zhipeng, Yang, Yisi, Jung, Dongwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-d61ea7755fc2a92be92dac2d9202a050fe90e1a3694fbcb4fc273a16d660cbdf3
container_end_page
container_issue 3
container_start_page 695
container_title Materials
container_volume 14
creator Chen, Xuewen
Du, Kexue
Du, Yuqing
Lian, Tingting
Liu, Jiqi
Bai, Rongren
Li, Zhipeng
Yang, Yisi
Jung, Dongwon
description X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects in the hot forming process, based on Oyane damage model, a high temperature damage model of X12 alloy steel was proposed by introducing the influences of temperature and strain rate on the damage evolution. A reverse analysis method was proposed to determine the critical damage value of Oyane damage model by comparing experimental and simulated fracture displacement in the tensile tests. Then, the critical damage value was determined as a function of temperature and strain rate. The high temperature damage model was combined to the commercial finite element software FORGE to simulate the high temperature tensile test. The accuracy of the damage model was verified by comparing the difference of the fracture displacement between simulated and experimental samples. Additionally, as stress triaxiality is a significant factor influencing the damage behavior of ductile materials, the effects of temperature and strain rate on the stress triaxiality of X12 alloy steel was analyzed by simulating the high temperature tensile process, and the damage mechanism of X12 alloy steel under high stress triaxiality was analyzed by SEM (Scanning Electron Microscope).
doi_str_mv 10.3390/ma14030695
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487080418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-d61ea7755fc2a92be92dac2d9202a050fe90e1a3694fbcb4fc273a16d660cbdf3</originalsourceid><addsrcrecordid>eNpdkd9qFDEUxoMottTe-AAS8EaE0fyZyUxuhFKtXahU7Ba8G85kTnZTZibbJFOoT9FHNtuttZqbhJxfvvOdfIS85uyDlJp9HIGXTDKlq2dkn2utCq7L8vmT8x45jPGK5SUlb4R-SfakrEpW63qf3H2HACMmDJEuepySs85Acn6i3tJTt1rTJY4bDJDmgPQzjLBC-s33OGyBn1zQo2Hwt_QiYb6yPtDLIQUoLub8yASXstxAf_i0rUQ3rehiusndkJ5vkhvdr12zJZr15K5nfEVeWBgiHj7sB-Ty5Mvy-LQ4O_-6OD46K4xUVSp6xRHquqqsEaBFh1r0YESvBRPAKmZRM-QglS5tZ7oyY7UErnqlmOl6Kw_Ip53uZu5G7E0ePcDQboIbIdy2Hlz7b2Vy63blb9q6UXX-xyzw7kEg-Ow7pnZ00eAwwIR-jq0om5pXvOEyo2__Q6_8HKY83j3FGlbeC77fUSb4GAPaRzOctdus279ZZ_jNU_uP6J9k5W9F_acj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487080418</pqid></control><display><type>article</type><title>Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Xuewen ; Du, Kexue ; Du, Yuqing ; Lian, Tingting ; Liu, Jiqi ; Bai, Rongren ; Li, Zhipeng ; Yang, Yisi ; Jung, Dongwon</creator><creatorcontrib>Chen, Xuewen ; Du, Kexue ; Du, Yuqing ; Lian, Tingting ; Liu, Jiqi ; Bai, Rongren ; Li, Zhipeng ; Yang, Yisi ; Jung, Dongwon</creatorcontrib><description>X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects in the hot forming process, based on Oyane damage model, a high temperature damage model of X12 alloy steel was proposed by introducing the influences of temperature and strain rate on the damage evolution. A reverse analysis method was proposed to determine the critical damage value of Oyane damage model by comparing experimental and simulated fracture displacement in the tensile tests. Then, the critical damage value was determined as a function of temperature and strain rate. The high temperature damage model was combined to the commercial finite element software FORGE to simulate the high temperature tensile test. The accuracy of the damage model was verified by comparing the difference of the fracture displacement between simulated and experimental samples. Additionally, as stress triaxiality is a significant factor influencing the damage behavior of ductile materials, the effects of temperature and strain rate on the stress triaxiality of X12 alloy steel was analyzed by simulating the high temperature tensile process, and the damage mechanism of X12 alloy steel under high stress triaxiality was analyzed by SEM (Scanning Electron Microscope).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14030695</identifier><identifier>PMID: 33540797</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloy steels ; Axial stress ; Cracks ; Damage assessment ; Deformation ; Finite element method ; Forging ; Forgings ; High temperature ; Hot forming ; Methods ; Model accuracy ; Optimization ; Optimization algorithms ; Optimization techniques ; Parameter identification ; Phase transitions ; Rotors ; Simulation ; Steam pressure ; Strain rate ; Temperature effects ; Tensile tests</subject><ispartof>Materials, 2021-02, Vol.14 (3), p.695</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-d61ea7755fc2a92be92dac2d9202a050fe90e1a3694fbcb4fc273a16d660cbdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2487080418/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2487080418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33540797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xuewen</creatorcontrib><creatorcontrib>Du, Kexue</creatorcontrib><creatorcontrib>Du, Yuqing</creatorcontrib><creatorcontrib>Lian, Tingting</creatorcontrib><creatorcontrib>Liu, Jiqi</creatorcontrib><creatorcontrib>Bai, Rongren</creatorcontrib><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Yang, Yisi</creatorcontrib><creatorcontrib>Jung, Dongwon</creatorcontrib><title>Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects in the hot forming process, based on Oyane damage model, a high temperature damage model of X12 alloy steel was proposed by introducing the influences of temperature and strain rate on the damage evolution. A reverse analysis method was proposed to determine the critical damage value of Oyane damage model by comparing experimental and simulated fracture displacement in the tensile tests. Then, the critical damage value was determined as a function of temperature and strain rate. The high temperature damage model was combined to the commercial finite element software FORGE to simulate the high temperature tensile test. The accuracy of the damage model was verified by comparing the difference of the fracture displacement between simulated and experimental samples. Additionally, as stress triaxiality is a significant factor influencing the damage behavior of ductile materials, the effects of temperature and strain rate on the stress triaxiality of X12 alloy steel was analyzed by simulating the high temperature tensile process, and the damage mechanism of X12 alloy steel under high stress triaxiality was analyzed by SEM (Scanning Electron Microscope).</description><subject>Alloy steels</subject><subject>Axial stress</subject><subject>Cracks</subject><subject>Damage assessment</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Forging</subject><subject>Forgings</subject><subject>High temperature</subject><subject>Hot forming</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Parameter identification</subject><subject>Phase transitions</subject><subject>Rotors</subject><subject>Simulation</subject><subject>Steam pressure</subject><subject>Strain rate</subject><subject>Temperature effects</subject><subject>Tensile tests</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkd9qFDEUxoMottTe-AAS8EaE0fyZyUxuhFKtXahU7Ba8G85kTnZTZibbJFOoT9FHNtuttZqbhJxfvvOdfIS85uyDlJp9HIGXTDKlq2dkn2utCq7L8vmT8x45jPGK5SUlb4R-SfakrEpW63qf3H2HACMmDJEuepySs85Acn6i3tJTt1rTJY4bDJDmgPQzjLBC-s33OGyBn1zQo2Hwt_QiYb6yPtDLIQUoLub8yASXstxAf_i0rUQ3rehiusndkJ5vkhvdr12zJZr15K5nfEVeWBgiHj7sB-Ty5Mvy-LQ4O_-6OD46K4xUVSp6xRHquqqsEaBFh1r0YESvBRPAKmZRM-QglS5tZ7oyY7UErnqlmOl6Kw_Ip53uZu5G7E0ePcDQboIbIdy2Hlz7b2Vy63blb9q6UXX-xyzw7kEg-Ow7pnZ00eAwwIR-jq0om5pXvOEyo2__Q6_8HKY83j3FGlbeC77fUSb4GAPaRzOctdus279ZZ_jNU_uP6J9k5W9F_acj</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Chen, Xuewen</creator><creator>Du, Kexue</creator><creator>Du, Yuqing</creator><creator>Lian, Tingting</creator><creator>Liu, Jiqi</creator><creator>Bai, Rongren</creator><creator>Li, Zhipeng</creator><creator>Yang, Yisi</creator><creator>Jung, Dongwon</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210202</creationdate><title>Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique</title><author>Chen, Xuewen ; Du, Kexue ; Du, Yuqing ; Lian, Tingting ; Liu, Jiqi ; Bai, Rongren ; Li, Zhipeng ; Yang, Yisi ; Jung, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-d61ea7755fc2a92be92dac2d9202a050fe90e1a3694fbcb4fc273a16d660cbdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloy steels</topic><topic>Axial stress</topic><topic>Cracks</topic><topic>Damage assessment</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Forging</topic><topic>Forgings</topic><topic>High temperature</topic><topic>Hot forming</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Parameter identification</topic><topic>Phase transitions</topic><topic>Rotors</topic><topic>Simulation</topic><topic>Steam pressure</topic><topic>Strain rate</topic><topic>Temperature effects</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuewen</creatorcontrib><creatorcontrib>Du, Kexue</creatorcontrib><creatorcontrib>Du, Yuqing</creatorcontrib><creatorcontrib>Lian, Tingting</creatorcontrib><creatorcontrib>Liu, Jiqi</creatorcontrib><creatorcontrib>Bai, Rongren</creatorcontrib><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Yang, Yisi</creatorcontrib><creatorcontrib>Jung, Dongwon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuewen</au><au>Du, Kexue</au><au>Du, Yuqing</au><au>Lian, Tingting</au><au>Liu, Jiqi</au><au>Bai, Rongren</au><au>Li, Zhipeng</au><au>Yang, Yisi</au><au>Jung, Dongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>14</volume><issue>3</issue><spage>695</spage><pages>695-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects in the hot forming process, based on Oyane damage model, a high temperature damage model of X12 alloy steel was proposed by introducing the influences of temperature and strain rate on the damage evolution. A reverse analysis method was proposed to determine the critical damage value of Oyane damage model by comparing experimental and simulated fracture displacement in the tensile tests. Then, the critical damage value was determined as a function of temperature and strain rate. The high temperature damage model was combined to the commercial finite element software FORGE to simulate the high temperature tensile test. The accuracy of the damage model was verified by comparing the difference of the fracture displacement between simulated and experimental samples. Additionally, as stress triaxiality is a significant factor influencing the damage behavior of ductile materials, the effects of temperature and strain rate on the stress triaxiality of X12 alloy steel was analyzed by simulating the high temperature tensile process, and the damage mechanism of X12 alloy steel under high stress triaxiality was analyzed by SEM (Scanning Electron Microscope).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33540797</pmid><doi>10.3390/ma14030695</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-02, Vol.14 (3), p.695
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867318
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloy steels
Axial stress
Cracks
Damage assessment
Deformation
Finite element method
Forging
Forgings
High temperature
Hot forming
Methods
Model accuracy
Optimization
Optimization algorithms
Optimization techniques
Parameter identification
Phase transitions
Rotors
Simulation
Steam pressure
Strain rate
Temperature effects
Tensile tests
title Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20Identification%20of%20High%20Temperature%20Damage%20Model%20of%20X12%20Alloy%20Steel%20for%20Ultra-Supercritical%20Rotor%20Using%20Inverse%20Optimization%20Technique&rft.jtitle=Materials&rft.au=Chen,%20Xuewen&rft.date=2021-02-02&rft.volume=14&rft.issue=3&rft.spage=695&rft.pages=695-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14030695&rft_dat=%3Cproquest_pubme%3E2487080418%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-d61ea7755fc2a92be92dac2d9202a050fe90e1a3694fbcb4fc273a16d660cbdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487080418&rft_id=info:pmid/33540797&rfr_iscdi=true