Loading…

Identification of novel transcription factor-microRNA-mRNA co-regulatory networks in pulmonary large-cell neuroendocrine carcinoma

Large cell neuroendocrine carcinoma (LCNEC) of the lung is a rare neuroendocrine neoplasm. Previous studies have shown that microRNAs (miRNAs) are widely involved in tumor regulation through targeting critical genes. However, it is unclear which miRNAs play vital roles in the pathogenesis of LCNEC,...

Full description

Saved in:
Bibliographic Details
Published in:Annals of translational medicine 2021-01, Vol.9 (2), p.133-133
Main Authors: Cai, Cunliang, Zeng, Qianli, Zhou, Guiliang, Mu, Xiangdong
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large cell neuroendocrine carcinoma (LCNEC) of the lung is a rare neuroendocrine neoplasm. Previous studies have shown that microRNAs (miRNAs) are widely involved in tumor regulation through targeting critical genes. However, it is unclear which miRNAs play vital roles in the pathogenesis of LCNEC, and how they interact with transcription factors (TFs) to regulate cancer-related genes. To determine the novel TF-miRNA-target gene feed-forward loop (FFL) model of LCNEC, we integrated multi-omics data from Gene Expression Omnibus (GEO), Transcriptional Regulatory Relationships Unraveled by Sentence-Based Text Mining (TRRUST), Transcriptional Regulatory Element Database (TRED), and The experimentally validated microRNA-target interactions database (miRTarBase database). First, expression profile datasets for mRNAs (GSE1037) and miRNAs (GSE19945) were downloaded from the GEO database. Overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified through integrative analysis. The target genes of the FFL were obtained from the miRTarBase database, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed on the target genes. Then, we screened for key miRNAs in the FFL and performed gene regulatory network analysis based on key miRNAs. Finally, the TF-miRNA-target gene FFLs were constructed by the hypergeometric test. A total of 343 DEGs and 60 DEMs were identified in LCNEC tissues compared to normal tissues, including 210 down-regulated and 133 up-regulated genes, and 29 down-regulated and 31 up-regulated miRNAs. Finally, the regulatory network of TF-miRNA-target gene was established. The key regulatory network modules included ETS1-miR195-CD36, TAOK1-miR7-1-3P-GRIA1, E2F3-miR195-CD36, and TEAD1-miR30A-CTHRC1. We constructed the TF-miRNA-target gene regulatory network, which is helpful for understanding the complex LCNEC regulatory mechanisms.
ISSN:2305-5839
2305-5839
DOI:10.21037/atm-20-7759