Loading…

Polarimetric Balanced Detection: Background-Free Mid-IR Evanescent Field Laser Spectroscopy for Low-Noise, Long-term Stable Chemical Sensing

In this work, we introduce polarimetric balanced detection as a new attenuated total reflection (ATR) infrared (IR) sensing scheme, leveraging unequal effective thicknesses achieved with laser light of different polarizations. We combined a monolithic widely tunable Vernier quantum cascade laser (QC...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2021-01, Vol.6 (1), p.35-42
Main Authors: Freitag, Stephan, Baer, Matthias, Buntzoll, Laura, Ramer, Georg, Schwaighofer, Andreas, Schmauss, Bernhard, Lendl, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we introduce polarimetric balanced detection as a new attenuated total reflection (ATR) infrared (IR) sensing scheme, leveraging unequal effective thicknesses achieved with laser light of different polarizations. We combined a monolithic widely tunable Vernier quantum cascade laser (QCL-XT) and a multibounce ATR IR spectroscopy setup for analysis of liquids in a process analytical setting. Polarimetric balanced detection enables simultaneous recording of background and sample spectra, significantly reducing long-term drifts. The root-mean-square noise could be improved by a factor of 10 in a long-term experiment, compared to conventional absorbance measurements obtained via the single-ended optical channel. The sensing performance of the device was further evaluated by on-site measurements of ethanol in water, leading to an improved limit of detection (LOD) achieved with polarimetric balanced detection. Sequential injection analysis was employed for automated injection of samples into a custom-built ATR flow cell mounted above a zinc sulfide multibounce ATR element. The QCL-XT posed to be suitable for mid-IR-based sensing in liquids due to its wide tunability. Polarimetric balanced detection proved to enhance the robustness and long-term stability of the sensing device, along with improving the LOD by a factor of 5. This demonstrates the potential for new polarimetric QCL-based ATR mid-IR sensing schemes for in-field measurements or process monitoring usually prone to a multitude of interferences.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.0c01342