Loading…

Use of a Modified SIRD Model to Analyze COVID-19 Data

Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countrie...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2021-03, Vol.60 (11), p.4251-4260
Main Authors: Sen, Devosmita, Sen, Debasis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3
cites cdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3
container_end_page 4260
container_issue 11
container_start_page 4251
container_title Industrial & engineering chemistry research
container_volume 60
creator Sen, Devosmita
Sen, Debasis
description Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.
doi_str_mv 10.1021/acs.iecr.0c04754
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848841102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqRHD3YmTV6bXoSx-WMwGajzGpL2VTu6ZjatMP96WzaHHjyFRz7f73t8CDlndMhowK514oY5JtWQJlREIA5In0FAfaACDkmfSil9kBJ65MS5JaUUQIhj0uMRQBhw6BNYOPRs5mnv0aZ5lmPqPU-fJt2EhVdbb1TqYvOF3nj-Op34LPYmutan5CjThcOz3Tsgi7vbl_GDP5vfT8ejma8F57WPTGsNwoAJY5GkjEeRQYNhgMYkRso0jUXGKKaBYTGjJoYYwpBrbkIa6BT5gNxse9eNWWGaYFlXulDrKl_paqOsztXfnzJ_V2_2U0UyAi7CtuByV1DZjwZdrVa5S7AodIm2cSqQQkrBWpktSrdoUlnnKsz2axhVnW3V2ladbbWz3UYufp-3D_zobYGrLdBFl7apWpnu_75vAl6KAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848841102</pqid></control><display><type>article</type><title>Use of a Modified SIRD Model to Analyze COVID-19 Data</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sen, Devosmita ; Sen, Debasis</creator><creatorcontrib>Sen, Devosmita ; Sen, Debasis</creatorcontrib><description>Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.0c04754</identifier><identifier>PMID: 37556235</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2021-03, Vol.60 (11), p.4251-4260</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society.</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</citedby><cites>FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</cites><orcidid>0000-0002-9080-0866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Devosmita</creatorcontrib><creatorcontrib>Sen, Debasis</creatorcontrib><title>Use of a Modified SIRD Model to Analyze COVID-19 Data</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.</description><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqRHD3YmTV6bXoSx-WMwGajzGpL2VTu6ZjatMP96WzaHHjyFRz7f73t8CDlndMhowK514oY5JtWQJlREIA5In0FAfaACDkmfSil9kBJ65MS5JaUUQIhj0uMRQBhw6BNYOPRs5mnv0aZ5lmPqPU-fJt2EhVdbb1TqYvOF3nj-Op34LPYmutan5CjThcOz3Tsgi7vbl_GDP5vfT8ejma8F57WPTGsNwoAJY5GkjEeRQYNhgMYkRso0jUXGKKaBYTGjJoYYwpBrbkIa6BT5gNxse9eNWWGaYFlXulDrKl_paqOsztXfnzJ_V2_2U0UyAi7CtuByV1DZjwZdrVa5S7AodIm2cSqQQkrBWpktSrdoUlnnKsz2axhVnW3V2ladbbWz3UYufp-3D_zobYGrLdBFl7apWpnu_75vAl6KAw</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Sen, Devosmita</creator><creator>Sen, Debasis</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9080-0866</orcidid></search><sort><creationdate>20210324</creationdate><title>Use of a Modified SIRD Model to Analyze COVID-19 Data</title><author>Sen, Devosmita ; Sen, Debasis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Devosmita</creatorcontrib><creatorcontrib>Sen, Debasis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Devosmita</au><au>Sen, Debasis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a Modified SIRD Model to Analyze COVID-19 Data</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2021-03-24</date><risdate>2021</risdate><volume>60</volume><issue>11</issue><spage>4251</spage><epage>4260</epage><pages>4251-4260</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37556235</pmid><doi>10.1021/acs.iecr.0c04754</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9080-0866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2021-03, Vol.60 (11), p.4251-4260
issn 0888-5885
1520-5045
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875346
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Kinetics, Catalysis, and Reaction Engineering
title Use of a Modified SIRD Model to Analyze COVID-19 Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20Modified%20SIRD%20Model%20to%20Analyze%20COVID-19%20Data&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Sen,%20Devosmita&rft.date=2021-03-24&rft.volume=60&rft.issue=11&rft.spage=4251&rft.epage=4260&rft.pages=4251-4260&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.0c04754&rft_dat=%3Cproquest_pubme%3E2848841102%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848841102&rft_id=info:pmid/37556235&rfr_iscdi=true