Loading…
Use of a Modified SIRD Model to Analyze COVID-19 Data
Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countrie...
Saved in:
Published in: | Industrial & engineering chemistry research 2021-03, Vol.60 (11), p.4251-4260 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3 |
---|---|
cites | cdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3 |
container_end_page | 4260 |
container_issue | 11 |
container_start_page | 4251 |
container_title | Industrial & engineering chemistry research |
container_volume | 60 |
creator | Sen, Devosmita Sen, Debasis |
description | Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared. |
doi_str_mv | 10.1021/acs.iecr.0c04754 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848841102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqRHD3YmTV6bXoSx-WMwGajzGpL2VTu6ZjatMP96WzaHHjyFRz7f73t8CDlndMhowK514oY5JtWQJlREIA5In0FAfaACDkmfSil9kBJ65MS5JaUUQIhj0uMRQBhw6BNYOPRs5mnv0aZ5lmPqPU-fJt2EhVdbb1TqYvOF3nj-Op34LPYmutan5CjThcOz3Tsgi7vbl_GDP5vfT8ejma8F57WPTGsNwoAJY5GkjEeRQYNhgMYkRso0jUXGKKaBYTGjJoYYwpBrbkIa6BT5gNxse9eNWWGaYFlXulDrKl_paqOsztXfnzJ_V2_2U0UyAi7CtuByV1DZjwZdrVa5S7AodIm2cSqQQkrBWpktSrdoUlnnKsz2axhVnW3V2ladbbWz3UYufp-3D_zobYGrLdBFl7apWpnu_75vAl6KAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848841102</pqid></control><display><type>article</type><title>Use of a Modified SIRD Model to Analyze COVID-19 Data</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Sen, Devosmita ; Sen, Debasis</creator><creatorcontrib>Sen, Devosmita ; Sen, Debasis</creatorcontrib><description>Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.0c04754</identifier><identifier>PMID: 37556235</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial & engineering chemistry research, 2021-03, Vol.60 (11), p.4251-4260</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society.</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</citedby><cites>FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</cites><orcidid>0000-0002-9080-0866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Devosmita</creatorcontrib><creatorcontrib>Sen, Debasis</creatorcontrib><title>Use of a Modified SIRD Model to Analyze COVID-19 Data</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.</description><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqRHD3YmTV6bXoSx-WMwGajzGpL2VTu6ZjatMP96WzaHHjyFRz7f73t8CDlndMhowK514oY5JtWQJlREIA5In0FAfaACDkmfSil9kBJ65MS5JaUUQIhj0uMRQBhw6BNYOPRs5mnv0aZ5lmPqPU-fJt2EhVdbb1TqYvOF3nj-Op34LPYmutan5CjThcOz3Tsgi7vbl_GDP5vfT8ejma8F57WPTGsNwoAJY5GkjEeRQYNhgMYkRso0jUXGKKaBYTGjJoYYwpBrbkIa6BT5gNxse9eNWWGaYFlXulDrKl_paqOsztXfnzJ_V2_2U0UyAi7CtuByV1DZjwZdrVa5S7AodIm2cSqQQkrBWpktSrdoUlnnKsz2axhVnW3V2ladbbWz3UYufp-3D_zobYGrLdBFl7apWpnu_75vAl6KAw</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Sen, Devosmita</creator><creator>Sen, Debasis</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9080-0866</orcidid></search><sort><creationdate>20210324</creationdate><title>Use of a Modified SIRD Model to Analyze COVID-19 Data</title><author>Sen, Devosmita ; Sen, Debasis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Devosmita</creatorcontrib><creatorcontrib>Sen, Debasis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Devosmita</au><au>Sen, Debasis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a Modified SIRD Model to Analyze COVID-19 Data</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2021-03-24</date><risdate>2021</risdate><volume>60</volume><issue>11</issue><spage>4251</spage><epage>4260</epage><pages>4251-4260</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Since the starting of the year 2020, the whole world is facing a challenge due to an outbreak of an unprecedented COVID-19 pandemic owing to a novel coronavirus. Here, a modified susceptible–infected–recovered–dead model has been used to analyze the time series data of the pandemic for five countries. It is established that the present model is capable of simultaneously explaining the temporal evolution of active-infected, recovered, and dead population of all these five countries. The key parameters governing the temporal evolution of the spread of this pandemic are estimated and compared.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37556235</pmid><doi>10.1021/acs.iecr.0c04754</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9080-0866</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2021-03, Vol.60 (11), p.4251-4260 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875346 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Kinetics, Catalysis, and Reaction Engineering |
title | Use of a Modified SIRD Model to Analyze COVID-19 Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20Modified%20SIRD%20Model%20to%20Analyze%20COVID-19%20Data&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Sen,%20Devosmita&rft.date=2021-03-24&rft.volume=60&rft.issue=11&rft.spage=4251&rft.epage=4260&rft.pages=4251-4260&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.0c04754&rft_dat=%3Cproquest_pubme%3E2848841102%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-e1aaa54b5b694cd1377bebe62ebbcb88dd94f10ed2b1910b9595663a3b602ade3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848841102&rft_id=info:pmid/37556235&rfr_iscdi=true |