Loading…

The Role of the Acromioclavicular Ligament in Acromioclavicular Joint Stability: A Cadaveric Biomechanical Study

Background: Acromioclavicular (AC) joint dislocation is evaluated using the radiologically based Rockwood classification. The relationship between ligamentous injury and radiological assessment is still controversial. Purpose/Hypothesis: To investigate how the AC ligament and trapezoid ligament biom...

Full description

Saved in:
Bibliographic Details
Published in:Orthopaedic journal of sports medicine 2021-02, Vol.9 (2), p.2325967120982947-2325967120982947
Main Authors: Kurata, Shimpei, Inoue, Kazuya, Hasegawa, Hideo, Shimizu, Takamasa, Iida, Akio, Kawamura, Kenji, Omokawa, Shohei, Mahakkanukrauh, Pasuk, Tanaka, Yasuhito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Acromioclavicular (AC) joint dislocation is evaluated using the radiologically based Rockwood classification. The relationship between ligamentous injury and radiological assessment is still controversial. Purpose/Hypothesis: To investigate how the AC ligament and trapezoid ligament biomechanically contribute to the stability of the AC joint using cadaveric specimens. The hypothesis was that isolated sectioning of the AC ligament would result in increased instability in the superior direction and that displacement >50% of the AC joint would occur. Study Design: Controlled laboratory study. Methods: Six shoulders from 6 fresh-frozen cadavers were used in this study. Both the scapula and sternum were solidly fixed on a customized wooden jig with an external fixator. We simulated distal clavicular dislocation with sequential sectioning of the AC and coracoclavicular (CC) ligaments. Sectioning stages were defined as follows: stage 0, the AC ligament, CC ligament, and AC joint capsule were left intact; stage 1, the anteroinferior bundle of the AC ligament, joint capsule, and disk were sectioned; stage 2, the superoposterior bundle of the AC ligament was sectioned; and stage 3, the trapezoid ligament was sectioned. The distal clavicle was loaded with 70 N in the superior and posterior directions, and the magnitudes of displacement were measured. Results: The amounts of superior displacement averaged 3.7 mm (stage 0), 3.8 mm (stage 1), 8.3 mm (stage 2), and 9.5 mm (stage 3). Superior displacement >50% of the AC joint was observed in stage 2 (4/6; 67%) and stage 3 (6/6; 100%). The magnitudes of posterior displacement were 3.7 mm (stage 0), 3.7 mm (stage 1), 5.6 mm (stage 2), and 9.8 mm (stage 3). Posterior displacement >50% of the AC joint was observed in stage 3 (1/6; 17%). Conclusion: We found that the AC ligaments contribute significantly to AC joint stability, and superior displacement >50% of the AC joint can occur with AC ligament tears alone. Clinical Relevance: The AC ligament plays an important role not only in horizontal stability but also in vertical stability of the AC joint.
ISSN:2325-9671
2325-9671
DOI:10.1177/2325967120982947