Loading…
MiR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling
Systemic sclerosis (SSc) is a prototypic fibrotic disease characterized by localized or diffuse skin thickening and fibrosis. Tissue fibrosis is driven by myofibroblasts, and factors affecting myofibroblast activation may also be involved in the development of SSc. In this study, we examined molecul...
Saved in:
Published in: | Aging (Albany, NY.) NY.), 2020-12, Vol.13 (2), p.2640-2654 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systemic sclerosis (SSc) is a prototypic fibrotic disease characterized by localized or diffuse skin thickening and fibrosis. Tissue fibrosis is driven by myofibroblasts, and factors affecting myofibroblast activation may also be involved in the development of SSc. In this study, we examined molecular mechanisms underlying SSc by focusing on myofibroblast activation processes. Bioinformatics analysis conducted to identify differentially expressed miRNAs (DEMs) and genes (DEGs) revealed that microRNA-16-5p (miR-16-5p) was downregulated and NOTCH2 was upregulated in SSc patients.
experiments confirmed that miR-16-5p was able to bind directly to NOTCH2 and inhibit myofibroblast activation. Moreover, miR-16-5p-dependent inhibition of NOTCH2 decreased collagen and α-SMA expression. MiR-16-5p downregulation and NOTCH2 upregulation was also confirmed
in SSc patients, and NOTCH2 activation promoted fibrosis progression
. These results indicate that miR-16-5p suppresses myofibroblast activation by suppressing NOTCH signaling. |
---|---|
ISSN: | 1945-4589 1945-4589 |
DOI: | 10.18632/aging.202308 |