Loading…

On the Structure and Reaction Mechanism of Human Acireductone Dioxygenase

Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD–acireduc...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2018-04, Vol.24 (20), p.5225-5237
Main Authors: Miłaczewska, Anna, Kot, Ewa, Amaya, José A., Makris, Thomas M., Zając, Marcin, Korecki, Józef, Chumakov, Aleksandr, Trzewik, Bartosz, Kędracka‐Krok, Sylwia, Minor, Władek, Chruszcz, Maksymilian, Borowski, Tomasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033
cites cdi_FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033
container_end_page 5237
container_issue 20
container_start_page 5225
container_title Chemistry : a European journal
container_volume 24
creator Miłaczewska, Anna
Kot, Ewa
Amaya, José A.
Makris, Thomas M.
Zając, Marcin
Korecki, Józef
Chumakov, Aleksandr
Trzewik, Bartosz
Kędracka‐Krok, Sylwia
Minor, Władek
Chruszcz, Maksymilian
Borowski, Tomasz
description Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD–acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+, which allows NO (and presumably O2) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O−O bond homolysis, which elicits cleavage of the C1−C2 bond of the substrate. Higher M3+/M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3‐dioxygenase mechanism. hARD working enzyme! Experimental and computational studies of acireductone dioxygenase (ARD) from the methionine salvage pathway suggested reaction mechanisms catalysed by two isoforms: Fe2+ promotes O−O homolysis and subsequent C1−C2 bond cleavage of the acireductone substrate, whereas Ni2+ promotes a concerted O−O, C1−C2 and C2−C3 bond heterolysis (see figure).
doi_str_mv 10.1002/chem.201704617
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7883896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023535856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxS1UBGnKlWNlqRcum_pjvbYvSChAgwRC6sfZcryzxGjXBnuXNv89GwVCy6WnOcxvnua9h9AxJTNKCPvqVtDNGKGSlBWVe2hCBaMFl5X4gCZEl7KoBNeH6GPO94QQXXF-gA6ZpppzVU3Q1W3A_Qrwjz4Nrh8SYBtq_B2s630M-AbcygafOxwbvBg6G_CZ8wnqEY4B8LmPf9Z3EGyGT2i_sW2Go5c5Rb8uL37OF8X17ber-dl14QQRsqgrzrgTTjVLqIEK3kiwnGlNdG1rUsqyoUxRkK7SZckFG60o57SjS6k04XyKTre6D8Oyg9pB6JNtzUPynU1rE603_26CX5m7-GSkUlyNAUzRyYtAio8D5N50PjtoWxsgDtlQLWk1psg36Jd36H0cUhjtGUYYF1wosaFmW8qlmHOCZvcMJWbTktm0ZHYtjQef_7aww19rGQG9BX77Ftb_kTPzxcXNm_gzyYyeKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023535856</pqid></control><display><type>article</type><title>On the Structure and Reaction Mechanism of Human Acireductone Dioxygenase</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Miłaczewska, Anna ; Kot, Ewa ; Amaya, José A. ; Makris, Thomas M. ; Zając, Marcin ; Korecki, Józef ; Chumakov, Aleksandr ; Trzewik, Bartosz ; Kędracka‐Krok, Sylwia ; Minor, Władek ; Chruszcz, Maksymilian ; Borowski, Tomasz</creator><creatorcontrib>Miłaczewska, Anna ; Kot, Ewa ; Amaya, José A. ; Makris, Thomas M. ; Zając, Marcin ; Korecki, Józef ; Chumakov, Aleksandr ; Trzewik, Bartosz ; Kędracka‐Krok, Sylwia ; Minor, Władek ; Chruszcz, Maksymilian ; Borowski, Tomasz</creatorcontrib><description>Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD–acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+, which allows NO (and presumably O2) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O−O bond homolysis, which elicits cleavage of the C1−C2 bond of the substrate. Higher M3+/M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3‐dioxygenase mechanism. hARD working enzyme! Experimental and computational studies of acireductone dioxygenase (ARD) from the methionine salvage pathway suggested reaction mechanisms catalysed by two isoforms: Fe2+ promotes O−O homolysis and subsequent C1−C2 bond cleavage of the acireductone substrate, whereas Ni2+ promotes a concerted O−O, C1−C2 and C2−C3 bond heterolysis (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201704617</identifier><identifier>PMID: 29193386</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acireductone dioxygenase ; Binding ; Catalysis ; Catalytic Domain ; Chemistry ; Computation ; Computer applications ; Crystal structure ; Dioxygenase ; Dioxygenases - chemistry ; Enzymes ; EPR spectroscopy ; Humans ; Ions ; Iron ; Iron - chemistry ; Metal ions ; Metals ; Methionine ; Models, Molecular ; Mössbauer spectroscopy ; Oxidation ; Oxidation-Reduction ; Protein Binding ; Protein Conformation ; protein structures ; Quercetin ; Reaction mechanisms ; Salvage ; Selenomethionine ; Selenomethionine - chemistry ; Signal Transduction ; Spectroscopy ; Spectrum analysis ; Substrates ; Vibrational spectra</subject><ispartof>Chemistry : a European journal, 2018-04, Vol.24 (20), p.5225-5237</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033</citedby><cites>FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033</cites><orcidid>0000-0001-9427-8123 ; 0000-0002-3450-3576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29193386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miłaczewska, Anna</creatorcontrib><creatorcontrib>Kot, Ewa</creatorcontrib><creatorcontrib>Amaya, José A.</creatorcontrib><creatorcontrib>Makris, Thomas M.</creatorcontrib><creatorcontrib>Zając, Marcin</creatorcontrib><creatorcontrib>Korecki, Józef</creatorcontrib><creatorcontrib>Chumakov, Aleksandr</creatorcontrib><creatorcontrib>Trzewik, Bartosz</creatorcontrib><creatorcontrib>Kędracka‐Krok, Sylwia</creatorcontrib><creatorcontrib>Minor, Władek</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Borowski, Tomasz</creatorcontrib><title>On the Structure and Reaction Mechanism of Human Acireductone Dioxygenase</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD–acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+, which allows NO (and presumably O2) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O−O bond homolysis, which elicits cleavage of the C1−C2 bond of the substrate. Higher M3+/M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3‐dioxygenase mechanism. hARD working enzyme! Experimental and computational studies of acireductone dioxygenase (ARD) from the methionine salvage pathway suggested reaction mechanisms catalysed by two isoforms: Fe2+ promotes O−O homolysis and subsequent C1−C2 bond cleavage of the acireductone substrate, whereas Ni2+ promotes a concerted O−O, C1−C2 and C2−C3 bond heterolysis (see figure).</description><subject>acireductone dioxygenase</subject><subject>Binding</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chemistry</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Crystal structure</subject><subject>Dioxygenase</subject><subject>Dioxygenases - chemistry</subject><subject>Enzymes</subject><subject>EPR spectroscopy</subject><subject>Humans</subject><subject>Ions</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Methionine</subject><subject>Models, Molecular</subject><subject>Mössbauer spectroscopy</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>protein structures</subject><subject>Quercetin</subject><subject>Reaction mechanisms</subject><subject>Salvage</subject><subject>Selenomethionine</subject><subject>Selenomethionine - chemistry</subject><subject>Signal Transduction</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Vibrational spectra</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1PGzEQxS1UBGnKlWNlqRcum_pjvbYvSChAgwRC6sfZcryzxGjXBnuXNv89GwVCy6WnOcxvnua9h9AxJTNKCPvqVtDNGKGSlBWVe2hCBaMFl5X4gCZEl7KoBNeH6GPO94QQXXF-gA6ZpppzVU3Q1W3A_Qrwjz4Nrh8SYBtq_B2s630M-AbcygafOxwbvBg6G_CZ8wnqEY4B8LmPf9Z3EGyGT2i_sW2Go5c5Rb8uL37OF8X17ber-dl14QQRsqgrzrgTTjVLqIEK3kiwnGlNdG1rUsqyoUxRkK7SZckFG60o57SjS6k04XyKTre6D8Oyg9pB6JNtzUPynU1rE603_26CX5m7-GSkUlyNAUzRyYtAio8D5N50PjtoWxsgDtlQLWk1psg36Jd36H0cUhjtGUYYF1wosaFmW8qlmHOCZvcMJWbTktm0ZHYtjQef_7aww19rGQG9BX77Ftb_kTPzxcXNm_gzyYyeKg</recordid><startdate>20180406</startdate><enddate>20180406</enddate><creator>Miłaczewska, Anna</creator><creator>Kot, Ewa</creator><creator>Amaya, José A.</creator><creator>Makris, Thomas M.</creator><creator>Zając, Marcin</creator><creator>Korecki, Józef</creator><creator>Chumakov, Aleksandr</creator><creator>Trzewik, Bartosz</creator><creator>Kędracka‐Krok, Sylwia</creator><creator>Minor, Władek</creator><creator>Chruszcz, Maksymilian</creator><creator>Borowski, Tomasz</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9427-8123</orcidid><orcidid>https://orcid.org/0000-0002-3450-3576</orcidid></search><sort><creationdate>20180406</creationdate><title>On the Structure and Reaction Mechanism of Human Acireductone Dioxygenase</title><author>Miłaczewska, Anna ; Kot, Ewa ; Amaya, José A. ; Makris, Thomas M. ; Zając, Marcin ; Korecki, Józef ; Chumakov, Aleksandr ; Trzewik, Bartosz ; Kędracka‐Krok, Sylwia ; Minor, Władek ; Chruszcz, Maksymilian ; Borowski, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acireductone dioxygenase</topic><topic>Binding</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chemistry</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Crystal structure</topic><topic>Dioxygenase</topic><topic>Dioxygenases - chemistry</topic><topic>Enzymes</topic><topic>EPR spectroscopy</topic><topic>Humans</topic><topic>Ions</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Methionine</topic><topic>Models, Molecular</topic><topic>Mössbauer spectroscopy</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>protein structures</topic><topic>Quercetin</topic><topic>Reaction mechanisms</topic><topic>Salvage</topic><topic>Selenomethionine</topic><topic>Selenomethionine - chemistry</topic><topic>Signal Transduction</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miłaczewska, Anna</creatorcontrib><creatorcontrib>Kot, Ewa</creatorcontrib><creatorcontrib>Amaya, José A.</creatorcontrib><creatorcontrib>Makris, Thomas M.</creatorcontrib><creatorcontrib>Zając, Marcin</creatorcontrib><creatorcontrib>Korecki, Józef</creatorcontrib><creatorcontrib>Chumakov, Aleksandr</creatorcontrib><creatorcontrib>Trzewik, Bartosz</creatorcontrib><creatorcontrib>Kędracka‐Krok, Sylwia</creatorcontrib><creatorcontrib>Minor, Władek</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Borowski, Tomasz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miłaczewska, Anna</au><au>Kot, Ewa</au><au>Amaya, José A.</au><au>Makris, Thomas M.</au><au>Zając, Marcin</au><au>Korecki, Józef</au><au>Chumakov, Aleksandr</au><au>Trzewik, Bartosz</au><au>Kędracka‐Krok, Sylwia</au><au>Minor, Władek</au><au>Chruszcz, Maksymilian</au><au>Borowski, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Structure and Reaction Mechanism of Human Acireductone Dioxygenase</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-04-06</date><risdate>2018</risdate><volume>24</volume><issue>20</issue><spage>5225</spage><epage>5237</epage><pages>5225-5237</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD–acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+, which allows NO (and presumably O2) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O−O bond homolysis, which elicits cleavage of the C1−C2 bond of the substrate. Higher M3+/M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3‐dioxygenase mechanism. hARD working enzyme! Experimental and computational studies of acireductone dioxygenase (ARD) from the methionine salvage pathway suggested reaction mechanisms catalysed by two isoforms: Fe2+ promotes O−O homolysis and subsequent C1−C2 bond cleavage of the acireductone substrate, whereas Ni2+ promotes a concerted O−O, C1−C2 and C2−C3 bond heterolysis (see figure).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29193386</pmid><doi>10.1002/chem.201704617</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9427-8123</orcidid><orcidid>https://orcid.org/0000-0002-3450-3576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-04, Vol.24 (20), p.5225-5237
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7883896
source Wiley-Blackwell Read & Publish Collection
subjects acireductone dioxygenase
Binding
Catalysis
Catalytic Domain
Chemistry
Computation
Computer applications
Crystal structure
Dioxygenase
Dioxygenases - chemistry
Enzymes
EPR spectroscopy
Humans
Ions
Iron
Iron - chemistry
Metal ions
Metals
Methionine
Models, Molecular
Mössbauer spectroscopy
Oxidation
Oxidation-Reduction
Protein Binding
Protein Conformation
protein structures
Quercetin
Reaction mechanisms
Salvage
Selenomethionine
Selenomethionine - chemistry
Signal Transduction
Spectroscopy
Spectrum analysis
Substrates
Vibrational spectra
title On the Structure and Reaction Mechanism of Human Acireductone Dioxygenase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Structure%20and%20Reaction%20Mechanism%20of%20Human%20Acireductone%20Dioxygenase&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Mi%C5%82aczewska,%20Anna&rft.date=2018-04-06&rft.volume=24&rft.issue=20&rft.spage=5225&rft.epage=5237&rft.pages=5225-5237&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201704617&rft_dat=%3Cproquest_pubme%3E2023535856%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5057-d6323c5c8fbede153f7ea329909dad0474f1281e7c69443527658cc9c1b789033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023535856&rft_id=info:pmid/29193386&rfr_iscdi=true