Loading…

Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts

Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent revie...

Full description

Saved in:
Bibliographic Details
Published in:JAMIA open 2020-12, Vol.3 (4), p.513-517
Main Authors: Hong, Julian C, Fairchild, Andrew T, Tanksley, Jarred P, Palta, Manisha, Tenenbaum, Jessica D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783
cites cdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783
container_end_page 517
container_issue 4
container_start_page 513
container_title JAMIA open
container_volume 3
creator Hong, Julian C
Fairchild, Andrew T
Tanksley, Jarred P
Palta, Manisha
Tenenbaum, Jessica D
description Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1. Results The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms. Conclusion NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.
doi_str_mv 10.1093/jamiaopen/ooaa064
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7886534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778908463</galeid><oup_id>10.1093/jamiaopen/ooaa064</oup_id><sourcerecordid>A778908463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</originalsourceid><addsrcrecordid>eNqNkUFrHSEUhaW0NCHND-imCN100Zc4OuM4XRRCSNpASDbtWu5zrhPDjE7VCcm_r4_3-kigi-BC0e8c772HkI8VO6lYJ07vYXIQZvSnIQAwWb8hh7xp6xVvRPX22fmAHKd0zxiruq6Tgr0nB0JILpRSh8TdQF4ijHQEPywwIJ1jMJiS8wO1IVJYpxzBZBc8DZYa8AYjzREhT-gzzeHRGZcdpm8UjCle5ok-YExLonfLBJ7i44wxpw_knYUx4fFuPyK_Ly9-nf9cXd_-uDo_u16Zhom8aiQHZlUP3AJrGFpuGyX79brpbc1Zi13Vg2wbrCvs64LUnZASwfJWgmiVOCLft77zsp6wN6XI0p-eo5sgPukATr988e5OD-FBt0rJRtTF4MvOIIY_C6asJ5cMjmVCGJakefmRsVKCKOjnLTrAiNp5Gzaz2uD6rG1Vx1QtN9TJf6iyepycCR6tK_cvBNVWYGJIKaLdV18xvQlf78PXu_CL5tPztveKf1EX4OsWCMv8Cr-_uAHAPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493006753</pqid></control><display><type>article</type><title>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Hong, Julian C ; Fairchild, Andrew T ; Tanksley, Jarred P ; Palta, Manisha ; Tenenbaum, Jessica D</creator><creatorcontrib>Hong, Julian C ; Fairchild, Andrew T ; Tanksley, Jarred P ; Palta, Manisha ; Tenenbaum, Jessica D</creatorcontrib><description>Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1. Results The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms. Conclusion NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.</description><identifier>ISSN: 2574-2531</identifier><identifier>EISSN: 2574-2531</identifier><identifier>DOI: 10.1093/jamiaopen/ooaa064</identifier><identifier>PMID: 33623888</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Application Notes ; Cancer ; Care and treatment ; Complications and side effects ; Computational linguistics ; Drug therapy ; Fatigue ; Language processing ; Medical care ; Natural language interfaces ; Quality management ; Radiation ; Radiotherapy</subject><ispartof>JAMIA open, 2020-12, Vol.3 (4), p.513-517</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</citedby><cites>FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</cites><orcidid>0000-0001-5172-6889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886534/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886534/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33623888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Julian C</creatorcontrib><creatorcontrib>Fairchild, Andrew T</creatorcontrib><creatorcontrib>Tanksley, Jarred P</creatorcontrib><creatorcontrib>Palta, Manisha</creatorcontrib><creatorcontrib>Tenenbaum, Jessica D</creatorcontrib><title>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</title><title>JAMIA open</title><addtitle>JAMIA Open</addtitle><description>Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1. Results The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms. Conclusion NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.</description><subject>Application Notes</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Complications and side effects</subject><subject>Computational linguistics</subject><subject>Drug therapy</subject><subject>Fatigue</subject><subject>Language processing</subject><subject>Medical care</subject><subject>Natural language interfaces</subject><subject>Quality management</subject><subject>Radiation</subject><subject>Radiotherapy</subject><issn>2574-2531</issn><issn>2574-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUFrHSEUhaW0NCHND-imCN100Zc4OuM4XRRCSNpASDbtWu5zrhPDjE7VCcm_r4_3-kigi-BC0e8c772HkI8VO6lYJ07vYXIQZvSnIQAwWb8hh7xp6xVvRPX22fmAHKd0zxiruq6Tgr0nB0JILpRSh8TdQF4ijHQEPywwIJ1jMJiS8wO1IVJYpxzBZBc8DZYa8AYjzREhT-gzzeHRGZcdpm8UjCle5ok-YExLonfLBJ7i44wxpw_knYUx4fFuPyK_Ly9-nf9cXd_-uDo_u16Zhom8aiQHZlUP3AJrGFpuGyX79brpbc1Zi13Vg2wbrCvs64LUnZASwfJWgmiVOCLft77zsp6wN6XI0p-eo5sgPukATr988e5OD-FBt0rJRtTF4MvOIIY_C6asJ5cMjmVCGJakefmRsVKCKOjnLTrAiNp5Gzaz2uD6rG1Vx1QtN9TJf6iyepycCR6tK_cvBNVWYGJIKaLdV18xvQlf78PXu_CL5tPztveKf1EX4OsWCMv8Cr-_uAHAPQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hong, Julian C</creator><creator>Fairchild, Andrew T</creator><creator>Tanksley, Jarred P</creator><creator>Palta, Manisha</creator><creator>Tenenbaum, Jessica D</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5172-6889</orcidid></search><sort><creationdate>20201201</creationdate><title>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</title><author>Hong, Julian C ; Fairchild, Andrew T ; Tanksley, Jarred P ; Palta, Manisha ; Tenenbaum, Jessica D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Application Notes</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Complications and side effects</topic><topic>Computational linguistics</topic><topic>Drug therapy</topic><topic>Fatigue</topic><topic>Language processing</topic><topic>Medical care</topic><topic>Natural language interfaces</topic><topic>Quality management</topic><topic>Radiation</topic><topic>Radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Julian C</creatorcontrib><creatorcontrib>Fairchild, Andrew T</creatorcontrib><creatorcontrib>Tanksley, Jarred P</creatorcontrib><creatorcontrib>Palta, Manisha</creatorcontrib><creatorcontrib>Tenenbaum, Jessica D</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMIA open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Julian C</au><au>Fairchild, Andrew T</au><au>Tanksley, Jarred P</au><au>Palta, Manisha</au><au>Tenenbaum, Jessica D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</atitle><jtitle>JAMIA open</jtitle><addtitle>JAMIA Open</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>3</volume><issue>4</issue><spage>513</spage><epage>517</epage><pages>513-517</pages><issn>2574-2531</issn><eissn>2574-2531</eissn><abstract>Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1. Results The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms. Conclusion NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33623888</pmid><doi>10.1093/jamiaopen/ooaa064</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5172-6889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-2531
ispartof JAMIA open, 2020-12, Vol.3 (4), p.513-517
issn 2574-2531
2574-2531
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7886534
source Oxford Journals Open Access Collection; PubMed Central
subjects Application Notes
Cancer
Care and treatment
Complications and side effects
Computational linguistics
Drug therapy
Fatigue
Language processing
Medical care
Natural language interfaces
Quality management
Radiation
Radiotherapy
title Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20language%20processing%20for%20abstraction%20of%20cancer%20treatment%20toxicities:%20accuracy%20versus%20human%20experts&rft.jtitle=JAMIA%20open&rft.au=Hong,%20Julian%20C&rft.date=2020-12-01&rft.volume=3&rft.issue=4&rft.spage=513&rft.epage=517&rft.pages=513-517&rft.issn=2574-2531&rft.eissn=2574-2531&rft_id=info:doi/10.1093/jamiaopen/ooaa064&rft_dat=%3Cgale_pubme%3EA778908463%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493006753&rft_id=info:pmid/33623888&rft_galeid=A778908463&rft_oup_id=10.1093/jamiaopen/ooaa064&rfr_iscdi=true