Loading…
Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts
Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent revie...
Saved in:
Published in: | JAMIA open 2020-12, Vol.3 (4), p.513-517 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783 |
container_end_page | 517 |
container_issue | 4 |
container_start_page | 513 |
container_title | JAMIA open |
container_volume | 3 |
creator | Hong, Julian C Fairchild, Andrew T Tanksley, Jarred P Palta, Manisha Tenenbaum, Jessica D |
description | Objectives
Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians.
Materials and Methods
Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1.
Results
The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms.
Conclusion
NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy. |
doi_str_mv | 10.1093/jamiaopen/ooaa064 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7886534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778908463</galeid><oup_id>10.1093/jamiaopen/ooaa064</oup_id><sourcerecordid>A778908463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</originalsourceid><addsrcrecordid>eNqNkUFrHSEUhaW0NCHND-imCN100Zc4OuM4XRRCSNpASDbtWu5zrhPDjE7VCcm_r4_3-kigi-BC0e8c772HkI8VO6lYJ07vYXIQZvSnIQAwWb8hh7xp6xVvRPX22fmAHKd0zxiruq6Tgr0nB0JILpRSh8TdQF4ijHQEPywwIJ1jMJiS8wO1IVJYpxzBZBc8DZYa8AYjzREhT-gzzeHRGZcdpm8UjCle5ok-YExLonfLBJ7i44wxpw_knYUx4fFuPyK_Ly9-nf9cXd_-uDo_u16Zhom8aiQHZlUP3AJrGFpuGyX79brpbc1Zi13Vg2wbrCvs64LUnZASwfJWgmiVOCLft77zsp6wN6XI0p-eo5sgPukATr988e5OD-FBt0rJRtTF4MvOIIY_C6asJ5cMjmVCGJakefmRsVKCKOjnLTrAiNp5Gzaz2uD6rG1Vx1QtN9TJf6iyepycCR6tK_cvBNVWYGJIKaLdV18xvQlf78PXu_CL5tPztveKf1EX4OsWCMv8Cr-_uAHAPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493006753</pqid></control><display><type>article</type><title>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Hong, Julian C ; Fairchild, Andrew T ; Tanksley, Jarred P ; Palta, Manisha ; Tenenbaum, Jessica D</creator><creatorcontrib>Hong, Julian C ; Fairchild, Andrew T ; Tanksley, Jarred P ; Palta, Manisha ; Tenenbaum, Jessica D</creatorcontrib><description>Objectives
Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians.
Materials and Methods
Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1.
Results
The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms.
Conclusion
NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.</description><identifier>ISSN: 2574-2531</identifier><identifier>EISSN: 2574-2531</identifier><identifier>DOI: 10.1093/jamiaopen/ooaa064</identifier><identifier>PMID: 33623888</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Application Notes ; Cancer ; Care and treatment ; Complications and side effects ; Computational linguistics ; Drug therapy ; Fatigue ; Language processing ; Medical care ; Natural language interfaces ; Quality management ; Radiation ; Radiotherapy</subject><ispartof>JAMIA open, 2020-12, Vol.3 (4), p.513-517</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</citedby><cites>FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</cites><orcidid>0000-0001-5172-6889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886534/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886534/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33623888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Julian C</creatorcontrib><creatorcontrib>Fairchild, Andrew T</creatorcontrib><creatorcontrib>Tanksley, Jarred P</creatorcontrib><creatorcontrib>Palta, Manisha</creatorcontrib><creatorcontrib>Tenenbaum, Jessica D</creatorcontrib><title>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</title><title>JAMIA open</title><addtitle>JAMIA Open</addtitle><description>Objectives
Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians.
Materials and Methods
Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1.
Results
The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms.
Conclusion
NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.</description><subject>Application Notes</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Complications and side effects</subject><subject>Computational linguistics</subject><subject>Drug therapy</subject><subject>Fatigue</subject><subject>Language processing</subject><subject>Medical care</subject><subject>Natural language interfaces</subject><subject>Quality management</subject><subject>Radiation</subject><subject>Radiotherapy</subject><issn>2574-2531</issn><issn>2574-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUFrHSEUhaW0NCHND-imCN100Zc4OuM4XRRCSNpASDbtWu5zrhPDjE7VCcm_r4_3-kigi-BC0e8c772HkI8VO6lYJ07vYXIQZvSnIQAwWb8hh7xp6xVvRPX22fmAHKd0zxiruq6Tgr0nB0JILpRSh8TdQF4ijHQEPywwIJ1jMJiS8wO1IVJYpxzBZBc8DZYa8AYjzREhT-gzzeHRGZcdpm8UjCle5ok-YExLonfLBJ7i44wxpw_knYUx4fFuPyK_Ly9-nf9cXd_-uDo_u16Zhom8aiQHZlUP3AJrGFpuGyX79brpbc1Zi13Vg2wbrCvs64LUnZASwfJWgmiVOCLft77zsp6wN6XI0p-eo5sgPukATr988e5OD-FBt0rJRtTF4MvOIIY_C6asJ5cMjmVCGJakefmRsVKCKOjnLTrAiNp5Gzaz2uD6rG1Vx1QtN9TJf6iyepycCR6tK_cvBNVWYGJIKaLdV18xvQlf78PXu_CL5tPztveKf1EX4OsWCMv8Cr-_uAHAPQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hong, Julian C</creator><creator>Fairchild, Andrew T</creator><creator>Tanksley, Jarred P</creator><creator>Palta, Manisha</creator><creator>Tenenbaum, Jessica D</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5172-6889</orcidid></search><sort><creationdate>20201201</creationdate><title>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</title><author>Hong, Julian C ; Fairchild, Andrew T ; Tanksley, Jarred P ; Palta, Manisha ; Tenenbaum, Jessica D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Application Notes</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Complications and side effects</topic><topic>Computational linguistics</topic><topic>Drug therapy</topic><topic>Fatigue</topic><topic>Language processing</topic><topic>Medical care</topic><topic>Natural language interfaces</topic><topic>Quality management</topic><topic>Radiation</topic><topic>Radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Julian C</creatorcontrib><creatorcontrib>Fairchild, Andrew T</creatorcontrib><creatorcontrib>Tanksley, Jarred P</creatorcontrib><creatorcontrib>Palta, Manisha</creatorcontrib><creatorcontrib>Tenenbaum, Jessica D</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMIA open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Julian C</au><au>Fairchild, Andrew T</au><au>Tanksley, Jarred P</au><au>Palta, Manisha</au><au>Tenenbaum, Jessica D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts</atitle><jtitle>JAMIA open</jtitle><addtitle>JAMIA Open</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>3</volume><issue>4</issue><spage>513</spage><epage>517</epage><pages>513-517</pages><issn>2574-2531</issn><eissn>2574-2531</eissn><abstract>Objectives
Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians.
Materials and Methods
Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1.
Results
The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms.
Conclusion
NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33623888</pmid><doi>10.1093/jamiaopen/ooaa064</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5172-6889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-2531 |
ispartof | JAMIA open, 2020-12, Vol.3 (4), p.513-517 |
issn | 2574-2531 2574-2531 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7886534 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Application Notes Cancer Care and treatment Complications and side effects Computational linguistics Drug therapy Fatigue Language processing Medical care Natural language interfaces Quality management Radiation Radiotherapy |
title | Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20language%20processing%20for%20abstraction%20of%20cancer%20treatment%20toxicities:%20accuracy%20versus%20human%20experts&rft.jtitle=JAMIA%20open&rft.au=Hong,%20Julian%20C&rft.date=2020-12-01&rft.volume=3&rft.issue=4&rft.spage=513&rft.epage=517&rft.pages=513-517&rft.issn=2574-2531&rft.eissn=2574-2531&rft_id=info:doi/10.1093/jamiaopen/ooaa064&rft_dat=%3Cgale_pubme%3EA778908463%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-562a0f8da2fa050ef2f586dbb5df4207e91da675e41ed4a0549366eaf276a3783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493006753&rft_id=info:pmid/33623888&rft_galeid=A778908463&rft_oup_id=10.1093/jamiaopen/ooaa064&rfr_iscdi=true |