Loading…

Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction

The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting e...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2021-03, Vol.120 (6), p.1011-1019
Main Authors: Cao, Wenpeng, Dong, Chuqiao, Kim, Seonghan, Hou, Decheng, Tai, Wanbo, Du, Lanying, Im, Wonpil, Zhang, X. Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3
cites cdi_FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3
container_end_page 1019
container_issue 6
container_start_page 1011
container_title Biophysical journal
container_volume 120
creator Cao, Wenpeng
Dong, Chuqiao
Kim, Seonghan
Hou, Decheng
Tai, Wanbo
Du, Lanying
Im, Wonpil
Zhang, X. Frank
description The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002–2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30–40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.
doi_str_mv 10.1016/j.bpj.2021.02.007
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7886630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349521001417</els_id><sourcerecordid>2491939631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3</originalsourceid><addsrcrecordid>eNp9kVFrFDEQx4Mo9lr9AL5IHn3ZdZJskg2CcD1bFQpCq76GNJt4OXeTNdkr6Kc35c6iLz7NwPzmNyF_hF4QaAkQ8XrX3s67lgIlLdAWQD5CK8I72gD04jFaAYBoWKf4CTotZQdAKAfyFJ0wJkBWZoXMeUiTs1sTgzUjrk02dnE5_DJLSBEnj2_W1zfNJn1tKC5z-O7w9fk7bOKAt_vJRLzeXFA857S4EJtjxSFWRxVVxTP0xJuxuOfHeoa-XF583nxorj69_7hZXzWWE7k0itjO9tIR6anijEvplQHBjPR9R-uQUu65Yr1gihPOifGSDV5ZRzrTC8vO0NuDd97fTm6wLi7ZjHrOYTL5p04m6H8nMWz1t3SnZd8LwaAKXh0FOf3Yu7LoKRTrxtFEl_ZF004RxZRgpKLkgNqcSsnOP5whoO-j0Ttdo9H30WigukZTd17-_b6HjT9ZVODNAXD1l-6Cy7rY4KJ1Q8jOLnpI4T_634APnmY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491939631</pqid></control><display><type>article</type><title>Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction</title><source>NCBI_PubMed Central(免费)</source><creator>Cao, Wenpeng ; Dong, Chuqiao ; Kim, Seonghan ; Hou, Decheng ; Tai, Wanbo ; Du, Lanying ; Im, Wonpil ; Zhang, X. Frank</creator><creatorcontrib>Cao, Wenpeng ; Dong, Chuqiao ; Kim, Seonghan ; Hou, Decheng ; Tai, Wanbo ; Du, Lanying ; Im, Wonpil ; Zhang, X. Frank</creatorcontrib><description>The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002–2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30–40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2021.02.007</identifier><identifier>PMID: 33607086</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Angiotensin-Converting Enzyme 2 - metabolism ; Biomechanical Phenomena ; Computer Simulation ; HEK293 Cells ; Humans ; Models, Biological ; Polysaccharides - chemistry ; Polysaccharides - metabolism ; Protein Binding ; Protein Domains ; Single Molecule Imaging ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Biophysical journal, 2021-03, Vol.120 (6), p.1011-1019</ispartof><rights>2021 Biophysical Society</rights><rights>Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 Biophysical Society. 2021 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3</citedby><cites>FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3</cites><orcidid>0000-0002-8778-595X ; 0000-0001-5642-6041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886630/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886630/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33607086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Wenpeng</creatorcontrib><creatorcontrib>Dong, Chuqiao</creatorcontrib><creatorcontrib>Kim, Seonghan</creatorcontrib><creatorcontrib>Hou, Decheng</creatorcontrib><creatorcontrib>Tai, Wanbo</creatorcontrib><creatorcontrib>Du, Lanying</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Zhang, X. Frank</creatorcontrib><title>Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002–2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30–40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.</description><subject>Angiotensin-Converting Enzyme 2 - metabolism</subject><subject>Biomechanical Phenomena</subject><subject>Computer Simulation</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Polysaccharides - chemistry</subject><subject>Polysaccharides - metabolism</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Single Molecule Imaging</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kVFrFDEQx4Mo9lr9AL5IHn3ZdZJskg2CcD1bFQpCq76GNJt4OXeTNdkr6Kc35c6iLz7NwPzmNyF_hF4QaAkQ8XrX3s67lgIlLdAWQD5CK8I72gD04jFaAYBoWKf4CTotZQdAKAfyFJ0wJkBWZoXMeUiTs1sTgzUjrk02dnE5_DJLSBEnj2_W1zfNJn1tKC5z-O7w9fk7bOKAt_vJRLzeXFA857S4EJtjxSFWRxVVxTP0xJuxuOfHeoa-XF583nxorj69_7hZXzWWE7k0itjO9tIR6anijEvplQHBjPR9R-uQUu65Yr1gihPOifGSDV5ZRzrTC8vO0NuDd97fTm6wLi7ZjHrOYTL5p04m6H8nMWz1t3SnZd8LwaAKXh0FOf3Yu7LoKRTrxtFEl_ZF004RxZRgpKLkgNqcSsnOP5whoO-j0Ttdo9H30WigukZTd17-_b6HjT9ZVODNAXD1l-6Cy7rY4KJ1Q8jOLnpI4T_634APnmY</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Cao, Wenpeng</creator><creator>Dong, Chuqiao</creator><creator>Kim, Seonghan</creator><creator>Hou, Decheng</creator><creator>Tai, Wanbo</creator><creator>Du, Lanying</creator><creator>Im, Wonpil</creator><creator>Zhang, X. Frank</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8778-595X</orcidid><orcidid>https://orcid.org/0000-0001-5642-6041</orcidid></search><sort><creationdate>20210316</creationdate><title>Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction</title><author>Cao, Wenpeng ; Dong, Chuqiao ; Kim, Seonghan ; Hou, Decheng ; Tai, Wanbo ; Du, Lanying ; Im, Wonpil ; Zhang, X. Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiotensin-Converting Enzyme 2 - metabolism</topic><topic>Biomechanical Phenomena</topic><topic>Computer Simulation</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Polysaccharides - chemistry</topic><topic>Polysaccharides - metabolism</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Single Molecule Imaging</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wenpeng</creatorcontrib><creatorcontrib>Dong, Chuqiao</creatorcontrib><creatorcontrib>Kim, Seonghan</creatorcontrib><creatorcontrib>Hou, Decheng</creatorcontrib><creatorcontrib>Tai, Wanbo</creatorcontrib><creatorcontrib>Du, Lanying</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Zhang, X. Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wenpeng</au><au>Dong, Chuqiao</au><au>Kim, Seonghan</au><au>Hou, Decheng</au><au>Tai, Wanbo</au><au>Du, Lanying</au><au>Im, Wonpil</au><au>Zhang, X. Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2021-03-16</date><risdate>2021</risdate><volume>120</volume><issue>6</issue><spage>1011</spage><epage>1019</epage><pages>1011-1019</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002–2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30–40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33607086</pmid><doi>10.1016/j.bpj.2021.02.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8778-595X</orcidid><orcidid>https://orcid.org/0000-0001-5642-6041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2021-03, Vol.120 (6), p.1011-1019
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7886630
source NCBI_PubMed Central(免费)
subjects Angiotensin-Converting Enzyme 2 - metabolism
Biomechanical Phenomena
Computer Simulation
HEK293 Cells
Humans
Models, Biological
Polysaccharides - chemistry
Polysaccharides - metabolism
Protein Binding
Protein Domains
Single Molecule Imaging
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - metabolism
title Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20characterization%20of%20SARS-CoV-2%20spike%20RBD%20and%20human%20ACE2%20protein-protein%20interaction&rft.jtitle=Biophysical%20journal&rft.au=Cao,%20Wenpeng&rft.date=2021-03-16&rft.volume=120&rft.issue=6&rft.spage=1011&rft.epage=1019&rft.pages=1011-1019&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2021.02.007&rft_dat=%3Cproquest_pubme%3E2491939631%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-91c4c87e17f2953577f9a063a7f8421c4225f593863951551af73df9ce14a86c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491939631&rft_id=info:pmid/33607086&rfr_iscdi=true