Loading…
Patient-tailored design for selective co-inhibition of leukemic cell subpopulations
The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective...
Saved in:
Published in: | Science advances 2021-02, Vol.7 (8) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Ianevski, Aleksandr Lahtela, Jenni Javarappa, Komal K Sergeev, Philipp Ghimire, Bishwa R Gautam, Prson Vähä-Koskela, Markus Turunen, Laura Linnavirta, Nora Kuusanmäki, Heikki Kontro, Mika Porkka, Kimmo Heckman, Caroline A Mattila, Pirkko Wennerberg, Krister Giri, Anil K Aittokallio, Tero |
description | The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation. |
doi_str_mv | 10.1126/sciadv.abe4038 |
format | article |
fullrecord | <record><control><sourceid>pubmed_crist</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33608276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhYMottS--qj7B7bmttnkRZDiDQoK6nNIstk2mm6WZLfgv3dLL9SnGThnPmbmAHCN4AwhzO6ScarazJS2FBJ-BsaYlEWOC8rPT_oRmKb0DSFElLECiUswIoRBjks2Bh_vqnO26fJOOR-irbLKJrdssjrELFlvTec2NjMhd83Kade50GShzrztf-zamcxY77PU6za0vVdbOV2Bi1r5ZKf7OgFfT4-f85d88fb8On9Y5IYi2uUKFyXTimoGqeG0NqqsreAKi4JpjBQmlJGCQ80F14IwDaFgpcA1FIQYK8gE3O-4ba_XtjLDGVF52Ua3VvFXBuXkf6VxK7kMG1lyUVDCBsDtDmCiS51rZBOikgjyAktBMESDY3ZwhJSirY90BOU2A7nLQO4zGAZuTnc62g8fJ39eWYTf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</title><source>American Association for the Advancement of Science</source><source>NORA - Norwegian Open Research Archives</source><source>PubMed Central</source><creator>Ianevski, Aleksandr ; Lahtela, Jenni ; Javarappa, Komal K ; Sergeev, Philipp ; Ghimire, Bishwa R ; Gautam, Prson ; Vähä-Koskela, Markus ; Turunen, Laura ; Linnavirta, Nora ; Kuusanmäki, Heikki ; Kontro, Mika ; Porkka, Kimmo ; Heckman, Caroline A ; Mattila, Pirkko ; Wennerberg, Krister ; Giri, Anil K ; Aittokallio, Tero</creator><creatorcontrib>Ianevski, Aleksandr ; Lahtela, Jenni ; Javarappa, Komal K ; Sergeev, Philipp ; Ghimire, Bishwa R ; Gautam, Prson ; Vähä-Koskela, Markus ; Turunen, Laura ; Linnavirta, Nora ; Kuusanmäki, Heikki ; Kontro, Mika ; Porkka, Kimmo ; Heckman, Caroline A ; Mattila, Pirkko ; Wennerberg, Krister ; Giri, Anil K ; Aittokallio, Tero</creatorcontrib><description>The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abe4038</identifier><identifier>PMID: 33608276</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Cancer ; Computer Science ; SciAdv r-articles</subject><ispartof>Science advances, 2021-02, Vol.7 (8)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</citedby><cites>FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</cites><orcidid>0000-0003-0274-4794 ; 0000-0001-6353-0664 ; 0000-0002-7780-482X ; 0000-0002-0234-1568 ; 0000-0002-1154-8501 ; 0000-0003-0941-1458 ; 0000-0001-5076-8366 ; 0000-0001-7764-7820 ; 0000-0003-4112-5902 ; 0000-0002-5741-607X ; 0000-0002-1352-4220 ; 0000-0001-9545-415X ; 0000-0001-5664-0021 ; 0000-0002-0886-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,26567,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33608276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ianevski, Aleksandr</creatorcontrib><creatorcontrib>Lahtela, Jenni</creatorcontrib><creatorcontrib>Javarappa, Komal K</creatorcontrib><creatorcontrib>Sergeev, Philipp</creatorcontrib><creatorcontrib>Ghimire, Bishwa R</creatorcontrib><creatorcontrib>Gautam, Prson</creatorcontrib><creatorcontrib>Vähä-Koskela, Markus</creatorcontrib><creatorcontrib>Turunen, Laura</creatorcontrib><creatorcontrib>Linnavirta, Nora</creatorcontrib><creatorcontrib>Kuusanmäki, Heikki</creatorcontrib><creatorcontrib>Kontro, Mika</creatorcontrib><creatorcontrib>Porkka, Kimmo</creatorcontrib><creatorcontrib>Heckman, Caroline A</creatorcontrib><creatorcontrib>Mattila, Pirkko</creatorcontrib><creatorcontrib>Wennerberg, Krister</creatorcontrib><creatorcontrib>Giri, Anil K</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><title>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.</description><subject>Cancer</subject><subject>Computer Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNpVkVtLAzEQhYMottS--qj7B7bmttnkRZDiDQoK6nNIstk2mm6WZLfgv3dLL9SnGThnPmbmAHCN4AwhzO6ScarazJS2FBJ-BsaYlEWOC8rPT_oRmKb0DSFElLECiUswIoRBjks2Bh_vqnO26fJOOR-irbLKJrdssjrELFlvTec2NjMhd83Kade50GShzrztf-zamcxY77PU6za0vVdbOV2Bi1r5ZKf7OgFfT4-f85d88fb8On9Y5IYi2uUKFyXTimoGqeG0NqqsreAKi4JpjBQmlJGCQ80F14IwDaFgpcA1FIQYK8gE3O-4ba_XtjLDGVF52Ua3VvFXBuXkf6VxK7kMG1lyUVDCBsDtDmCiS51rZBOikgjyAktBMESDY3ZwhJSirY90BOU2A7nLQO4zGAZuTnc62g8fJ39eWYTf</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Ianevski, Aleksandr</creator><creator>Lahtela, Jenni</creator><creator>Javarappa, Komal K</creator><creator>Sergeev, Philipp</creator><creator>Ghimire, Bishwa R</creator><creator>Gautam, Prson</creator><creator>Vähä-Koskela, Markus</creator><creator>Turunen, Laura</creator><creator>Linnavirta, Nora</creator><creator>Kuusanmäki, Heikki</creator><creator>Kontro, Mika</creator><creator>Porkka, Kimmo</creator><creator>Heckman, Caroline A</creator><creator>Mattila, Pirkko</creator><creator>Wennerberg, Krister</creator><creator>Giri, Anil K</creator><creator>Aittokallio, Tero</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0274-4794</orcidid><orcidid>https://orcid.org/0000-0001-6353-0664</orcidid><orcidid>https://orcid.org/0000-0002-7780-482X</orcidid><orcidid>https://orcid.org/0000-0002-0234-1568</orcidid><orcidid>https://orcid.org/0000-0002-1154-8501</orcidid><orcidid>https://orcid.org/0000-0003-0941-1458</orcidid><orcidid>https://orcid.org/0000-0001-5076-8366</orcidid><orcidid>https://orcid.org/0000-0001-7764-7820</orcidid><orcidid>https://orcid.org/0000-0003-4112-5902</orcidid><orcidid>https://orcid.org/0000-0002-5741-607X</orcidid><orcidid>https://orcid.org/0000-0002-1352-4220</orcidid><orcidid>https://orcid.org/0000-0001-9545-415X</orcidid><orcidid>https://orcid.org/0000-0001-5664-0021</orcidid><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid></search><sort><creationdate>20210219</creationdate><title>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</title><author>Ianevski, Aleksandr ; Lahtela, Jenni ; Javarappa, Komal K ; Sergeev, Philipp ; Ghimire, Bishwa R ; Gautam, Prson ; Vähä-Koskela, Markus ; Turunen, Laura ; Linnavirta, Nora ; Kuusanmäki, Heikki ; Kontro, Mika ; Porkka, Kimmo ; Heckman, Caroline A ; Mattila, Pirkko ; Wennerberg, Krister ; Giri, Anil K ; Aittokallio, Tero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer</topic><topic>Computer Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ianevski, Aleksandr</creatorcontrib><creatorcontrib>Lahtela, Jenni</creatorcontrib><creatorcontrib>Javarappa, Komal K</creatorcontrib><creatorcontrib>Sergeev, Philipp</creatorcontrib><creatorcontrib>Ghimire, Bishwa R</creatorcontrib><creatorcontrib>Gautam, Prson</creatorcontrib><creatorcontrib>Vähä-Koskela, Markus</creatorcontrib><creatorcontrib>Turunen, Laura</creatorcontrib><creatorcontrib>Linnavirta, Nora</creatorcontrib><creatorcontrib>Kuusanmäki, Heikki</creatorcontrib><creatorcontrib>Kontro, Mika</creatorcontrib><creatorcontrib>Porkka, Kimmo</creatorcontrib><creatorcontrib>Heckman, Caroline A</creatorcontrib><creatorcontrib>Mattila, Pirkko</creatorcontrib><creatorcontrib>Wennerberg, Krister</creatorcontrib><creatorcontrib>Giri, Anil K</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ianevski, Aleksandr</au><au>Lahtela, Jenni</au><au>Javarappa, Komal K</au><au>Sergeev, Philipp</au><au>Ghimire, Bishwa R</au><au>Gautam, Prson</au><au>Vähä-Koskela, Markus</au><au>Turunen, Laura</au><au>Linnavirta, Nora</au><au>Kuusanmäki, Heikki</au><au>Kontro, Mika</au><au>Porkka, Kimmo</au><au>Heckman, Caroline A</au><au>Mattila, Pirkko</au><au>Wennerberg, Krister</au><au>Giri, Anil K</au><au>Aittokallio, Tero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>7</volume><issue>8</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33608276</pmid><doi>10.1126/sciadv.abe4038</doi><orcidid>https://orcid.org/0000-0003-0274-4794</orcidid><orcidid>https://orcid.org/0000-0001-6353-0664</orcidid><orcidid>https://orcid.org/0000-0002-7780-482X</orcidid><orcidid>https://orcid.org/0000-0002-0234-1568</orcidid><orcidid>https://orcid.org/0000-0002-1154-8501</orcidid><orcidid>https://orcid.org/0000-0003-0941-1458</orcidid><orcidid>https://orcid.org/0000-0001-5076-8366</orcidid><orcidid>https://orcid.org/0000-0001-7764-7820</orcidid><orcidid>https://orcid.org/0000-0003-4112-5902</orcidid><orcidid>https://orcid.org/0000-0002-5741-607X</orcidid><orcidid>https://orcid.org/0000-0002-1352-4220</orcidid><orcidid>https://orcid.org/0000-0001-9545-415X</orcidid><orcidid>https://orcid.org/0000-0001-5664-0021</orcidid><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-02, Vol.7 (8) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895436 |
source | American Association for the Advancement of Science; NORA - Norwegian Open Research Archives; PubMed Central |
subjects | Cancer Computer Science SciAdv r-articles |
title | Patient-tailored design for selective co-inhibition of leukemic cell subpopulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-tailored%20design%20for%20selective%20co-inhibition%20of%20leukemic%20cell%20subpopulations&rft.jtitle=Science%20advances&rft.au=Ianevski,%20Aleksandr&rft.date=2021-02-19&rft.volume=7&rft.issue=8&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abe4038&rft_dat=%3Cpubmed_crist%3E33608276%3C/pubmed_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33608276&rfr_iscdi=true |