Loading…

Patient-tailored design for selective co-inhibition of leukemic cell subpopulations

The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-02, Vol.7 (8)
Main Authors: Ianevski, Aleksandr, Lahtela, Jenni, Javarappa, Komal K, Sergeev, Philipp, Ghimire, Bishwa R, Gautam, Prson, Vähä-Koskela, Markus, Turunen, Laura, Linnavirta, Nora, Kuusanmäki, Heikki, Kontro, Mika, Porkka, Kimmo, Heckman, Caroline A, Mattila, Pirkko, Wennerberg, Krister, Giri, Anil K, Aittokallio, Tero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93
cites cdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93
container_end_page
container_issue 8
container_start_page
container_title Science advances
container_volume 7
creator Ianevski, Aleksandr
Lahtela, Jenni
Javarappa, Komal K
Sergeev, Philipp
Ghimire, Bishwa R
Gautam, Prson
Vähä-Koskela, Markus
Turunen, Laura
Linnavirta, Nora
Kuusanmäki, Heikki
Kontro, Mika
Porkka, Kimmo
Heckman, Caroline A
Mattila, Pirkko
Wennerberg, Krister
Giri, Anil K
Aittokallio, Tero
description The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.
doi_str_mv 10.1126/sciadv.abe4038
format article
fullrecord <record><control><sourceid>pubmed_crist</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33608276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhYMottS--qj7B7bmttnkRZDiDQoK6nNIstk2mm6WZLfgv3dLL9SnGThnPmbmAHCN4AwhzO6ScarazJS2FBJ-BsaYlEWOC8rPT_oRmKb0DSFElLECiUswIoRBjks2Bh_vqnO26fJOOR-irbLKJrdssjrELFlvTec2NjMhd83Kade50GShzrztf-zamcxY77PU6za0vVdbOV2Bi1r5ZKf7OgFfT4-f85d88fb8On9Y5IYi2uUKFyXTimoGqeG0NqqsreAKi4JpjBQmlJGCQ80F14IwDaFgpcA1FIQYK8gE3O-4ba_XtjLDGVF52Ua3VvFXBuXkf6VxK7kMG1lyUVDCBsDtDmCiS51rZBOikgjyAktBMESDY3ZwhJSirY90BOU2A7nLQO4zGAZuTnc62g8fJ39eWYTf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</title><source>American Association for the Advancement of Science</source><source>NORA - Norwegian Open Research Archives</source><source>PubMed Central</source><creator>Ianevski, Aleksandr ; Lahtela, Jenni ; Javarappa, Komal K ; Sergeev, Philipp ; Ghimire, Bishwa R ; Gautam, Prson ; Vähä-Koskela, Markus ; Turunen, Laura ; Linnavirta, Nora ; Kuusanmäki, Heikki ; Kontro, Mika ; Porkka, Kimmo ; Heckman, Caroline A ; Mattila, Pirkko ; Wennerberg, Krister ; Giri, Anil K ; Aittokallio, Tero</creator><creatorcontrib>Ianevski, Aleksandr ; Lahtela, Jenni ; Javarappa, Komal K ; Sergeev, Philipp ; Ghimire, Bishwa R ; Gautam, Prson ; Vähä-Koskela, Markus ; Turunen, Laura ; Linnavirta, Nora ; Kuusanmäki, Heikki ; Kontro, Mika ; Porkka, Kimmo ; Heckman, Caroline A ; Mattila, Pirkko ; Wennerberg, Krister ; Giri, Anil K ; Aittokallio, Tero</creatorcontrib><description>The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abe4038</identifier><identifier>PMID: 33608276</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Cancer ; Computer Science ; SciAdv r-articles</subject><ispartof>Science advances, 2021-02, Vol.7 (8)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</citedby><cites>FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</cites><orcidid>0000-0003-0274-4794 ; 0000-0001-6353-0664 ; 0000-0002-7780-482X ; 0000-0002-0234-1568 ; 0000-0002-1154-8501 ; 0000-0003-0941-1458 ; 0000-0001-5076-8366 ; 0000-0001-7764-7820 ; 0000-0003-4112-5902 ; 0000-0002-5741-607X ; 0000-0002-1352-4220 ; 0000-0001-9545-415X ; 0000-0001-5664-0021 ; 0000-0002-0886-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,26567,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33608276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ianevski, Aleksandr</creatorcontrib><creatorcontrib>Lahtela, Jenni</creatorcontrib><creatorcontrib>Javarappa, Komal K</creatorcontrib><creatorcontrib>Sergeev, Philipp</creatorcontrib><creatorcontrib>Ghimire, Bishwa R</creatorcontrib><creatorcontrib>Gautam, Prson</creatorcontrib><creatorcontrib>Vähä-Koskela, Markus</creatorcontrib><creatorcontrib>Turunen, Laura</creatorcontrib><creatorcontrib>Linnavirta, Nora</creatorcontrib><creatorcontrib>Kuusanmäki, Heikki</creatorcontrib><creatorcontrib>Kontro, Mika</creatorcontrib><creatorcontrib>Porkka, Kimmo</creatorcontrib><creatorcontrib>Heckman, Caroline A</creatorcontrib><creatorcontrib>Mattila, Pirkko</creatorcontrib><creatorcontrib>Wennerberg, Krister</creatorcontrib><creatorcontrib>Giri, Anil K</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><title>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.</description><subject>Cancer</subject><subject>Computer Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNpVkVtLAzEQhYMottS--qj7B7bmttnkRZDiDQoK6nNIstk2mm6WZLfgv3dLL9SnGThnPmbmAHCN4AwhzO6ScarazJS2FBJ-BsaYlEWOC8rPT_oRmKb0DSFElLECiUswIoRBjks2Bh_vqnO26fJOOR-irbLKJrdssjrELFlvTec2NjMhd83Kade50GShzrztf-zamcxY77PU6za0vVdbOV2Bi1r5ZKf7OgFfT4-f85d88fb8On9Y5IYi2uUKFyXTimoGqeG0NqqsreAKi4JpjBQmlJGCQ80F14IwDaFgpcA1FIQYK8gE3O-4ba_XtjLDGVF52Ua3VvFXBuXkf6VxK7kMG1lyUVDCBsDtDmCiS51rZBOikgjyAktBMESDY3ZwhJSirY90BOU2A7nLQO4zGAZuTnc62g8fJ39eWYTf</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Ianevski, Aleksandr</creator><creator>Lahtela, Jenni</creator><creator>Javarappa, Komal K</creator><creator>Sergeev, Philipp</creator><creator>Ghimire, Bishwa R</creator><creator>Gautam, Prson</creator><creator>Vähä-Koskela, Markus</creator><creator>Turunen, Laura</creator><creator>Linnavirta, Nora</creator><creator>Kuusanmäki, Heikki</creator><creator>Kontro, Mika</creator><creator>Porkka, Kimmo</creator><creator>Heckman, Caroline A</creator><creator>Mattila, Pirkko</creator><creator>Wennerberg, Krister</creator><creator>Giri, Anil K</creator><creator>Aittokallio, Tero</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0274-4794</orcidid><orcidid>https://orcid.org/0000-0001-6353-0664</orcidid><orcidid>https://orcid.org/0000-0002-7780-482X</orcidid><orcidid>https://orcid.org/0000-0002-0234-1568</orcidid><orcidid>https://orcid.org/0000-0002-1154-8501</orcidid><orcidid>https://orcid.org/0000-0003-0941-1458</orcidid><orcidid>https://orcid.org/0000-0001-5076-8366</orcidid><orcidid>https://orcid.org/0000-0001-7764-7820</orcidid><orcidid>https://orcid.org/0000-0003-4112-5902</orcidid><orcidid>https://orcid.org/0000-0002-5741-607X</orcidid><orcidid>https://orcid.org/0000-0002-1352-4220</orcidid><orcidid>https://orcid.org/0000-0001-9545-415X</orcidid><orcidid>https://orcid.org/0000-0001-5664-0021</orcidid><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid></search><sort><creationdate>20210219</creationdate><title>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</title><author>Ianevski, Aleksandr ; Lahtela, Jenni ; Javarappa, Komal K ; Sergeev, Philipp ; Ghimire, Bishwa R ; Gautam, Prson ; Vähä-Koskela, Markus ; Turunen, Laura ; Linnavirta, Nora ; Kuusanmäki, Heikki ; Kontro, Mika ; Porkka, Kimmo ; Heckman, Caroline A ; Mattila, Pirkko ; Wennerberg, Krister ; Giri, Anil K ; Aittokallio, Tero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer</topic><topic>Computer Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ianevski, Aleksandr</creatorcontrib><creatorcontrib>Lahtela, Jenni</creatorcontrib><creatorcontrib>Javarappa, Komal K</creatorcontrib><creatorcontrib>Sergeev, Philipp</creatorcontrib><creatorcontrib>Ghimire, Bishwa R</creatorcontrib><creatorcontrib>Gautam, Prson</creatorcontrib><creatorcontrib>Vähä-Koskela, Markus</creatorcontrib><creatorcontrib>Turunen, Laura</creatorcontrib><creatorcontrib>Linnavirta, Nora</creatorcontrib><creatorcontrib>Kuusanmäki, Heikki</creatorcontrib><creatorcontrib>Kontro, Mika</creatorcontrib><creatorcontrib>Porkka, Kimmo</creatorcontrib><creatorcontrib>Heckman, Caroline A</creatorcontrib><creatorcontrib>Mattila, Pirkko</creatorcontrib><creatorcontrib>Wennerberg, Krister</creatorcontrib><creatorcontrib>Giri, Anil K</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ianevski, Aleksandr</au><au>Lahtela, Jenni</au><au>Javarappa, Komal K</au><au>Sergeev, Philipp</au><au>Ghimire, Bishwa R</au><au>Gautam, Prson</au><au>Vähä-Koskela, Markus</au><au>Turunen, Laura</au><au>Linnavirta, Nora</au><au>Kuusanmäki, Heikki</au><au>Kontro, Mika</au><au>Porkka, Kimmo</au><au>Heckman, Caroline A</au><au>Mattila, Pirkko</au><au>Wennerberg, Krister</au><au>Giri, Anil K</au><au>Aittokallio, Tero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-tailored design for selective co-inhibition of leukemic cell subpopulations</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>7</volume><issue>8</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33608276</pmid><doi>10.1126/sciadv.abe4038</doi><orcidid>https://orcid.org/0000-0003-0274-4794</orcidid><orcidid>https://orcid.org/0000-0001-6353-0664</orcidid><orcidid>https://orcid.org/0000-0002-7780-482X</orcidid><orcidid>https://orcid.org/0000-0002-0234-1568</orcidid><orcidid>https://orcid.org/0000-0002-1154-8501</orcidid><orcidid>https://orcid.org/0000-0003-0941-1458</orcidid><orcidid>https://orcid.org/0000-0001-5076-8366</orcidid><orcidid>https://orcid.org/0000-0001-7764-7820</orcidid><orcidid>https://orcid.org/0000-0003-4112-5902</orcidid><orcidid>https://orcid.org/0000-0002-5741-607X</orcidid><orcidid>https://orcid.org/0000-0002-1352-4220</orcidid><orcidid>https://orcid.org/0000-0001-9545-415X</orcidid><orcidid>https://orcid.org/0000-0001-5664-0021</orcidid><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-02, Vol.7 (8)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895436
source American Association for the Advancement of Science; NORA - Norwegian Open Research Archives; PubMed Central
subjects Cancer
Computer Science
SciAdv r-articles
title Patient-tailored design for selective co-inhibition of leukemic cell subpopulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-tailored%20design%20for%20selective%20co-inhibition%20of%20leukemic%20cell%20subpopulations&rft.jtitle=Science%20advances&rft.au=Ianevski,%20Aleksandr&rft.date=2021-02-19&rft.volume=7&rft.issue=8&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abe4038&rft_dat=%3Cpubmed_crist%3E33608276%3C/pubmed_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-a2576ba4b604c84fca7fe98a2956b21a23463580b898b936b0096792f0933ce93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33608276&rfr_iscdi=true