Loading…
LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency
Abstract Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 a...
Saved in:
Published in: | Nucleic acids research 2021-02, Vol.49 (3), p.1619-1630 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13 |
container_end_page | 1630 |
container_issue | 3 |
container_start_page | 1619 |
container_title | Nucleic acids research |
container_volume | 49 |
creator | Jurkiw, Thomas J Tumbale, Percy P Schellenberg, Matthew J Cunningham-Rundles, Charlotte Williams, R Scott O’Brien, Patrick J |
description | Abstract
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels. |
doi_str_mv | 10.1093/nar/gkaa1297 |
format | article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkaa1297</oup_id><sourcerecordid>10.1093/nar/gkaa1297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMobk5vniU3L9blV9v0IsjQORh40XNI07TGrUlJusn-ezPrRC_mEvjyvE_4XgAuMbrFqKBTK_20WUmJSZEfgTGmGUlYkZFjMEYUpQlGjI_AWQjvCGGGU3YKRpSyeNJsDLbLxRzDsLOVd62G7aaXvXE2QK9bV-k1lFA512kfx1sNre4_nF9BV8O1aaStYGlsZWwDje0jpIZw72Kq7aLSBP1F7udQ17VRRlu1OwcntVwHffF9T8Dr48PL7ClZPs8Xs_tlohjO-qTkWMW9aMkJTxmqM54rkpaZ1HVBeUGYzBRhpVYqrsOLHOcUEy6VZlSmvMR0Au4Gb7cpW10pbXsv16LzppV-J5w04u-LNW-icVuRR1tKUBTcDALlXQhe1z9ZjMS-fxH7F4f-I371-78f-FB4BK4HwG26_1WfRPaTKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</title><source>Oxford Journals Open Access Collection</source><creator>Jurkiw, Thomas J ; Tumbale, Percy P ; Schellenberg, Matthew J ; Cunningham-Rundles, Charlotte ; Williams, R Scott ; O’Brien, Patrick J</creator><creatorcontrib>Jurkiw, Thomas J ; Tumbale, Percy P ; Schellenberg, Matthew J ; Cunningham-Rundles, Charlotte ; Williams, R Scott ; O’Brien, Patrick J</creatorcontrib><description>Abstract
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa1297</identifier><identifier>PMID: 33444456</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; DNA - metabolism ; DNA Ligase ATP - chemistry ; DNA Ligase ATP - genetics ; DNA Ligase ATP - metabolism ; Humans ; Ligands ; Magnesium - chemistry ; Models, Molecular ; Mutation ; Nucleic Acid Enzymes ; Primary Immunodeficiency Diseases - genetics ; Protein Folding ; Syndrome</subject><ispartof>Nucleic acids research, 2021-02, Vol.49 (3), p.1619-1630</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2021. 2021</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</citedby><cites>FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</cites><orcidid>0000-0001-7853-8626 ; 0000-0002-4610-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897520/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897520/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkaa1297$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33444456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurkiw, Thomas J</creatorcontrib><creatorcontrib>Tumbale, Percy P</creatorcontrib><creatorcontrib>Schellenberg, Matthew J</creatorcontrib><creatorcontrib>Cunningham-Rundles, Charlotte</creatorcontrib><creatorcontrib>Williams, R Scott</creatorcontrib><creatorcontrib>O’Brien, Patrick J</creatorcontrib><title>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.</description><subject>Binding Sites</subject><subject>DNA - metabolism</subject><subject>DNA Ligase ATP - chemistry</subject><subject>DNA Ligase ATP - genetics</subject><subject>DNA Ligase ATP - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Magnesium - chemistry</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Enzymes</subject><subject>Primary Immunodeficiency Diseases - genetics</subject><subject>Protein Folding</subject><subject>Syndrome</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMobk5vniU3L9blV9v0IsjQORh40XNI07TGrUlJusn-ezPrRC_mEvjyvE_4XgAuMbrFqKBTK_20WUmJSZEfgTGmGUlYkZFjMEYUpQlGjI_AWQjvCGGGU3YKRpSyeNJsDLbLxRzDsLOVd62G7aaXvXE2QK9bV-k1lFA512kfx1sNre4_nF9BV8O1aaStYGlsZWwDje0jpIZw72Kq7aLSBP1F7udQ17VRRlu1OwcntVwHffF9T8Dr48PL7ClZPs8Xs_tlohjO-qTkWMW9aMkJTxmqM54rkpaZ1HVBeUGYzBRhpVYqrsOLHOcUEy6VZlSmvMR0Au4Gb7cpW10pbXsv16LzppV-J5w04u-LNW-icVuRR1tKUBTcDALlXQhe1z9ZjMS-fxH7F4f-I371-78f-FB4BK4HwG26_1WfRPaTKA</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Jurkiw, Thomas J</creator><creator>Tumbale, Percy P</creator><creator>Schellenberg, Matthew J</creator><creator>Cunningham-Rundles, Charlotte</creator><creator>Williams, R Scott</creator><creator>O’Brien, Patrick J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7853-8626</orcidid><orcidid>https://orcid.org/0000-0002-4610-8397</orcidid></search><sort><creationdate>20210222</creationdate><title>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</title><author>Jurkiw, Thomas J ; Tumbale, Percy P ; Schellenberg, Matthew J ; Cunningham-Rundles, Charlotte ; Williams, R Scott ; O’Brien, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding Sites</topic><topic>DNA - metabolism</topic><topic>DNA Ligase ATP - chemistry</topic><topic>DNA Ligase ATP - genetics</topic><topic>DNA Ligase ATP - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Magnesium - chemistry</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Enzymes</topic><topic>Primary Immunodeficiency Diseases - genetics</topic><topic>Protein Folding</topic><topic>Syndrome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurkiw, Thomas J</creatorcontrib><creatorcontrib>Tumbale, Percy P</creatorcontrib><creatorcontrib>Schellenberg, Matthew J</creatorcontrib><creatorcontrib>Cunningham-Rundles, Charlotte</creatorcontrib><creatorcontrib>Williams, R Scott</creatorcontrib><creatorcontrib>O’Brien, Patrick J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jurkiw, Thomas J</au><au>Tumbale, Percy P</au><au>Schellenberg, Matthew J</au><au>Cunningham-Rundles, Charlotte</au><au>Williams, R Scott</au><au>O’Brien, Patrick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-02-22</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>1619</spage><epage>1630</epage><pages>1619-1630</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33444456</pmid><doi>10.1093/nar/gkaa1297</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7853-8626</orcidid><orcidid>https://orcid.org/0000-0002-4610-8397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2021-02, Vol.49 (3), p.1619-1630 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897520 |
source | Oxford Journals Open Access Collection |
subjects | Binding Sites DNA - metabolism DNA Ligase ATP - chemistry DNA Ligase ATP - genetics DNA Ligase ATP - metabolism Humans Ligands Magnesium - chemistry Models, Molecular Mutation Nucleic Acid Enzymes Primary Immunodeficiency Diseases - genetics Protein Folding Syndrome |
title | LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIG1%20syndrome%20mutations%20remodel%20a%20cooperative%20network%20of%20ligand%20binding%20interactions%20to%20compromise%20ligation%20efficiency&rft.jtitle=Nucleic%20acids%20research&rft.au=Jurkiw,%20Thomas%20J&rft.date=2021-02-22&rft.volume=49&rft.issue=3&rft.spage=1619&rft.epage=1630&rft.pages=1619-1630&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa1297&rft_dat=%3Coup_TOX%3E10.1093/nar/gkaa1297%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33444456&rft_oup_id=10.1093/nar/gkaa1297&rfr_iscdi=true |