Loading…

LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency

Abstract Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 a...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2021-02, Vol.49 (3), p.1619-1630
Main Authors: Jurkiw, Thomas J, Tumbale, Percy P, Schellenberg, Matthew J, Cunningham-Rundles, Charlotte, Williams, R Scott, O’Brien, Patrick J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13
cites cdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13
container_end_page 1630
container_issue 3
container_start_page 1619
container_title Nucleic acids research
container_volume 49
creator Jurkiw, Thomas J
Tumbale, Percy P
Schellenberg, Matthew J
Cunningham-Rundles, Charlotte
Williams, R Scott
O’Brien, Patrick J
description Abstract Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.
doi_str_mv 10.1093/nar/gkaa1297
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkaa1297</oup_id><sourcerecordid>10.1093/nar/gkaa1297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMobk5vniU3L9blV9v0IsjQORh40XNI07TGrUlJusn-ezPrRC_mEvjyvE_4XgAuMbrFqKBTK_20WUmJSZEfgTGmGUlYkZFjMEYUpQlGjI_AWQjvCGGGU3YKRpSyeNJsDLbLxRzDsLOVd62G7aaXvXE2QK9bV-k1lFA512kfx1sNre4_nF9BV8O1aaStYGlsZWwDje0jpIZw72Kq7aLSBP1F7udQ17VRRlu1OwcntVwHffF9T8Dr48PL7ClZPs8Xs_tlohjO-qTkWMW9aMkJTxmqM54rkpaZ1HVBeUGYzBRhpVYqrsOLHOcUEy6VZlSmvMR0Au4Gb7cpW10pbXsv16LzppV-J5w04u-LNW-icVuRR1tKUBTcDALlXQhe1z9ZjMS-fxH7F4f-I371-78f-FB4BK4HwG26_1WfRPaTKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</title><source>Oxford Journals Open Access Collection</source><creator>Jurkiw, Thomas J ; Tumbale, Percy P ; Schellenberg, Matthew J ; Cunningham-Rundles, Charlotte ; Williams, R Scott ; O’Brien, Patrick J</creator><creatorcontrib>Jurkiw, Thomas J ; Tumbale, Percy P ; Schellenberg, Matthew J ; Cunningham-Rundles, Charlotte ; Williams, R Scott ; O’Brien, Patrick J</creatorcontrib><description>Abstract Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa1297</identifier><identifier>PMID: 33444456</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; DNA - metabolism ; DNA Ligase ATP - chemistry ; DNA Ligase ATP - genetics ; DNA Ligase ATP - metabolism ; Humans ; Ligands ; Magnesium - chemistry ; Models, Molecular ; Mutation ; Nucleic Acid Enzymes ; Primary Immunodeficiency Diseases - genetics ; Protein Folding ; Syndrome</subject><ispartof>Nucleic acids research, 2021-02, Vol.49 (3), p.1619-1630</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2021. 2021</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</citedby><cites>FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</cites><orcidid>0000-0001-7853-8626 ; 0000-0002-4610-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897520/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897520/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkaa1297$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33444456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurkiw, Thomas J</creatorcontrib><creatorcontrib>Tumbale, Percy P</creatorcontrib><creatorcontrib>Schellenberg, Matthew J</creatorcontrib><creatorcontrib>Cunningham-Rundles, Charlotte</creatorcontrib><creatorcontrib>Williams, R Scott</creatorcontrib><creatorcontrib>O’Brien, Patrick J</creatorcontrib><title>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.</description><subject>Binding Sites</subject><subject>DNA - metabolism</subject><subject>DNA Ligase ATP - chemistry</subject><subject>DNA Ligase ATP - genetics</subject><subject>DNA Ligase ATP - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Magnesium - chemistry</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Enzymes</subject><subject>Primary Immunodeficiency Diseases - genetics</subject><subject>Protein Folding</subject><subject>Syndrome</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMobk5vniU3L9blV9v0IsjQORh40XNI07TGrUlJusn-ezPrRC_mEvjyvE_4XgAuMbrFqKBTK_20WUmJSZEfgTGmGUlYkZFjMEYUpQlGjI_AWQjvCGGGU3YKRpSyeNJsDLbLxRzDsLOVd62G7aaXvXE2QK9bV-k1lFA512kfx1sNre4_nF9BV8O1aaStYGlsZWwDje0jpIZw72Kq7aLSBP1F7udQ17VRRlu1OwcntVwHffF9T8Dr48PL7ClZPs8Xs_tlohjO-qTkWMW9aMkJTxmqM54rkpaZ1HVBeUGYzBRhpVYqrsOLHOcUEy6VZlSmvMR0Au4Gb7cpW10pbXsv16LzppV-J5w04u-LNW-icVuRR1tKUBTcDALlXQhe1z9ZjMS-fxH7F4f-I371-78f-FB4BK4HwG26_1WfRPaTKA</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Jurkiw, Thomas J</creator><creator>Tumbale, Percy P</creator><creator>Schellenberg, Matthew J</creator><creator>Cunningham-Rundles, Charlotte</creator><creator>Williams, R Scott</creator><creator>O’Brien, Patrick J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7853-8626</orcidid><orcidid>https://orcid.org/0000-0002-4610-8397</orcidid></search><sort><creationdate>20210222</creationdate><title>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</title><author>Jurkiw, Thomas J ; Tumbale, Percy P ; Schellenberg, Matthew J ; Cunningham-Rundles, Charlotte ; Williams, R Scott ; O’Brien, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding Sites</topic><topic>DNA - metabolism</topic><topic>DNA Ligase ATP - chemistry</topic><topic>DNA Ligase ATP - genetics</topic><topic>DNA Ligase ATP - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Magnesium - chemistry</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Enzymes</topic><topic>Primary Immunodeficiency Diseases - genetics</topic><topic>Protein Folding</topic><topic>Syndrome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurkiw, Thomas J</creatorcontrib><creatorcontrib>Tumbale, Percy P</creatorcontrib><creatorcontrib>Schellenberg, Matthew J</creatorcontrib><creatorcontrib>Cunningham-Rundles, Charlotte</creatorcontrib><creatorcontrib>Williams, R Scott</creatorcontrib><creatorcontrib>O’Brien, Patrick J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jurkiw, Thomas J</au><au>Tumbale, Percy P</au><au>Schellenberg, Matthew J</au><au>Cunningham-Rundles, Charlotte</au><au>Williams, R Scott</au><au>O’Brien, Patrick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-02-22</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>1619</spage><epage>1630</epage><pages>1619-1630</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33444456</pmid><doi>10.1093/nar/gkaa1297</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7853-8626</orcidid><orcidid>https://orcid.org/0000-0002-4610-8397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-02, Vol.49 (3), p.1619-1630
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897520
source Oxford Journals Open Access Collection
subjects Binding Sites
DNA - metabolism
DNA Ligase ATP - chemistry
DNA Ligase ATP - genetics
DNA Ligase ATP - metabolism
Humans
Ligands
Magnesium - chemistry
Models, Molecular
Mutation
Nucleic Acid Enzymes
Primary Immunodeficiency Diseases - genetics
Protein Folding
Syndrome
title LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIG1%20syndrome%20mutations%20remodel%20a%20cooperative%20network%20of%20ligand%20binding%20interactions%20to%20compromise%20ligation%20efficiency&rft.jtitle=Nucleic%20acids%20research&rft.au=Jurkiw,%20Thomas%20J&rft.date=2021-02-22&rft.volume=49&rft.issue=3&rft.spage=1619&rft.epage=1630&rft.pages=1619-1630&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa1297&rft_dat=%3Coup_TOX%3E10.1093/nar/gkaa1297%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-b81c1293b828540f687c25b6aef938924a6c24becc444897173128ace43a58b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33444456&rft_oup_id=10.1093/nar/gkaa1297&rfr_iscdi=true