Loading…

Rapid Response to Drive COVID-19 Research in a Learning Health Care System: Rationale and Design of the Houston Methodist COVID-19 Surveillance and Outcomes Registry (CURATOR)

The COVID-19 pandemic has exacerbated the challenges of meaningful health care digitization. The need for rapid yet validated decision-making requires robust data infrastructure. Organizations with a focus on learning health care (LHC) systems tend to adapt better to rapidly evolving data needs. Few...

Full description

Saved in:
Bibliographic Details
Published in:JMIR medical informatics 2021-02, Vol.9 (2), p.e26773-e26773
Main Authors: Vahidy, Farhaan, Jones, Stephen L, Tano, Mauricio E, Nicolas, Juan Carlos, Khan, Osman A, Meeks, Jennifer R, Pan, Alan P, Menser, Terri, Sasangohar, Farzan, Naufal, George, Sostman, Dirk, Nasir, Khurram, Kash, Bita A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The COVID-19 pandemic has exacerbated the challenges of meaningful health care digitization. The need for rapid yet validated decision-making requires robust data infrastructure. Organizations with a focus on learning health care (LHC) systems tend to adapt better to rapidly evolving data needs. Few studies have demonstrated a successful implementation of data digitization principles in an LHC context across health care systems during the COVID-19 pandemic. We share our experience and provide a framework for assembling and organizing multidisciplinary resources, structuring and regulating research needs, and developing a single source of truth (SSoT) for COVID-19 research by applying fundamental principles of health care digitization, in the context of LHC systems across a complex health care organization. Houston Methodist (HM) comprises eight tertiary care hospitals and an expansive primary care network across Greater Houston, Texas. During the early phase of the pandemic, institutional leadership envisioned the need to streamline COVID-19 research and established the retrospective research task force (RRTF). We describe an account of the structure, functioning, and productivity of the RRTF. We further elucidate the technical and structural details of a comprehensive data repository-the HM COVID-19 Surveillance and Outcomes Registry (CURATOR). We particularly highlight how CURATOR conforms to standard health care digitization principles in the LHC context. The HM COVID-19 RRTF comprises expertise in epidemiology, health systems, clinical domains, data sciences, information technology, and research regulation. The RRTF initially convened in March 2020 to prioritize and streamline COVID-19 observational research; to date, it has reviewed over 60 protocols and made recommendations to the institutional review board (IRB). The RRTF also established the charter for CURATOR, which in itself was IRB-approved in April 2020. CURATOR is a relational structured query language database that is directly populated with data from electronic health records, via largely automated extract, transform, and load procedures. The CURATOR design enables longitudinal tracking of COVID-19 cases and controls before and after COVID-19 testing. CURATOR has been set up following the SSoT principle and is harmonized across other COVID-19 data sources. CURATOR eliminates data silos by leveraging unique and disparate big data sources for COVID-19 research and provides a platform to capit
ISSN:2291-9694
2291-9694
DOI:10.2196/26773