Loading…

HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System

Antiretroviral therapy (ART) has transformed HIV into a chronic condition, lengthening and improving the lives of individuals living with this virus. Despite successful suppression of HIV replication, people living with HIV (PLWH) are susceptible to a growing number of comorbidities, including neuro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroimmune pharmacology 2020-12, Vol.15 (4), p.729-742
Main Authors: Nickoloff-Bybel, E. A., Calderon, T. M., Gaskill, P. J., Berman, J. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antiretroviral therapy (ART) has transformed HIV into a chronic condition, lengthening and improving the lives of individuals living with this virus. Despite successful suppression of HIV replication, people living with HIV (PLWH) are susceptible to a growing number of comorbidities, including neuroHIV that results from infection of the central nervous system (CNS). Alterations in the dopaminergic system have long been associated with HIV infection of the CNS. Studies indicate that changes in dopamine concentrations not only alter neurotransmission, but also significantly impact the function of immune cells, contributing to neuroinflammation and neuronal dysfunction. Monocytes/macrophages, which are a major target for HIV in the CNS, are responsive to dopamine. Therefore, defining more precisely the mechanisms by which dopamine acts on these cells, and the changes in cellular function elicited by this neurotransmitter are necessary to develop therapeutic strategies to treat neuroHIV. This is especially important for vulnerable populations of PLWH with chemically altered dopamine concentrations, such as individuals with substance use disorder (SUD), or aging individuals using dopamine-altering medications. The specific neuropathologic and neurocognitive consequences of increased CNS dopamine remain unclear. This is due to the complex nature of HIV neuropathogenesis, and logistical and technical challenges that contribute to inconsistencies among cohort studies, animal models and in vitro studies, as well as lack of demographic data and access to human CNS samples and cells. This review summarizes current understanding of the impact of dopamine on HIV neuropathogenesis, and proposes new experimental approaches to examine the role of dopamine in CNS HIV infection. Graphical abstract HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System. Both substance abuse disorders and the use of dopaminergic medications for age-related diseases are associated with changes in CNS dopamine concentrations and dopaminergic neurotransmission. These changes can lead to aberrant immune function, particularly in myeloid cells, which contributes to the neuroinflammation, neuropathology and dysfunctional neurotransmission observed in dopamine-rich regions in HIV+ individuals. These changes, which are seen despite the use antiretroviral therapy (ART), in turn lead to further dysregulation of the dopamine system. Thus, in individuals with elevated dopamine, the bi-direc
ISSN:1557-1890
1557-1904
DOI:10.1007/s11481-020-09927-6