Loading…
A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TA...
Saved in:
Published in: | PeerJ. Computer science 2020-11, Vol.6, p.e307-e307, Article e307 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773 |
---|---|
cites | cdi_FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773 |
container_end_page | e307 |
container_issue | |
container_start_page | e307 |
container_title | PeerJ. Computer science |
container_volume | 6 |
creator | Rozenwald, Michal B Galitsyna, Aleksandra A Sapunov, Grigory V Khrameeva, Ekaterina E Gelfand, Mikhail S |
description | Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns in
based on chromatin marks across three cell lines. We present linear regression models with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation data. The bidirectional long short-term memory RNN architecture produced the best prediction scores and identified biologically relevant features. Distribution of protein Chriz (Chromator) and histone modification H3K4me3 were selected as the most informative features for the prediction of TADs characteristics. This approach may be adapted to any similar biological dataset of chromatin features across various cell lines and species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML. |
doi_str_mv | 10.7717/PEERJ-CS.307 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643261298</galeid><sourcerecordid>A643261298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpjTOyxAWkZkn8EccXpNWyQFElUAtny3HGiZfETu0Eyr_Hq5bSRdgHj2aeecceT5Y9L4sV5yV_82W7vfyUb65WpOCPsmNMeJUzIfDjB_ZRdhrjriiKkpVpiafZESF1WQlWH2fDGo1K99YBGkAFZ12HTFAj_PThOzI-oLkHNAVorZ6td8gbpPvgRzVbl-JDu89I5rvgo596Oyi0xL0PJtuBg9lqZEDNS4D4LHti1BDh9O48yb69337dfMwvPn8436wvck1xzXONORQVLQBD06RbU1VSahjBVKkUUTUIDgIUaVpRGNNqoRhuNG9qzKDinJxkb291p6UZodXg5qAGOQU7qvBLemXlYcTZXnb-h-QCU8qqJPDqTiD46wXiLEcbNQyDcuCXKDEr6lpUNREJffkPuvNLcOl5EtOKMV7WlP2lOjWAtM74VFfvReW6ogRXJRZ1olb_odJuYbTaOzA2-Q8SXh8kJGaGm7lTS4zy_OrykD27ZXX6qRjA3PejLOR-mOQEEHZSR5mGKeEvHvbwHv4zOuQ31vjFwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465571845</pqid></control><display><type>article</type><title>A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features</title><source>PubMed Central Free</source><source>ProQuest - Publicly Available Content Database</source><creator>Rozenwald, Michal B ; Galitsyna, Aleksandra A ; Sapunov, Grigory V ; Khrameeva, Ekaterina E ; Gelfand, Mikhail S</creator><creatorcontrib>Rozenwald, Michal B ; Galitsyna, Aleksandra A ; Sapunov, Grigory V ; Khrameeva, Ekaterina E ; Gelfand, Mikhail S</creatorcontrib><description>Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns in
based on chromatin marks across three cell lines. We present linear regression models with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation data. The bidirectional long short-term memory RNN architecture produced the best prediction scores and identified biologically relevant features. Distribution of protein Chriz (Chromator) and histone modification H3K4me3 were selected as the most informative features for the prediction of TADs characteristics. This approach may be adapted to any similar biological dataset of chromatin features across various cell lines and species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/PEERJ-CS.307</identifier><identifier>PMID: 33816958</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Analysis ; Artificial neural networks ; Binding sites ; Bioinformatics ; Biotechnology ; Chromatin ; Chromosomes ; Computational Biology ; Data Mining and Machine Learning ; Data Science ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; Domains ; Drosophila ; Dynamic programming ; Epigenetic inheritance ; Epigenetics ; Folding ; Fruit flies ; Gene expression ; Generalized linear models ; Genes ; Genomes ; Innovations ; Insects ; Machine learning ; Mammals ; Molecular Biology ; Neural networks ; Protein binding ; Proteins ; Recurrent neural networks ; Regression models ; Regularization ; RNA polymerase</subject><ispartof>PeerJ. Computer science, 2020-11, Vol.6, p.e307-e307, Article e307</ispartof><rights>2020 Rozenwald et al.</rights><rights>COPYRIGHT 2020 PeerJ. Ltd.</rights><rights>2020 Rozenwald et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Rozenwald et al. 2020 Rozenwald et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773</citedby><cites>FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2465571845/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2465571845?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33816958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozenwald, Michal B</creatorcontrib><creatorcontrib>Galitsyna, Aleksandra A</creatorcontrib><creatorcontrib>Sapunov, Grigory V</creatorcontrib><creatorcontrib>Khrameeva, Ekaterina E</creatorcontrib><creatorcontrib>Gelfand, Mikhail S</creatorcontrib><title>A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns in
based on chromatin marks across three cell lines. We present linear regression models with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation data. The bidirectional long short-term memory RNN architecture produced the best prediction scores and identified biologically relevant features. Distribution of protein Chriz (Chromator) and histone modification H3K4me3 were selected as the most informative features for the prediction of TADs characteristics. This approach may be adapted to any similar biological dataset of chromatin features across various cell lines and species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML.</description><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Computational Biology</subject><subject>Data Mining and Machine Learning</subject><subject>Data Science</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>Domains</subject><subject>Drosophila</subject><subject>Dynamic programming</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Folding</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Genes</subject><subject>Genomes</subject><subject>Innovations</subject><subject>Insects</subject><subject>Machine learning</subject><subject>Mammals</subject><subject>Molecular Biology</subject><subject>Neural networks</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Recurrent neural networks</subject><subject>Regression models</subject><subject>Regularization</subject><subject>RNA polymerase</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhiMEolXpjTOyxAWkZkn8EccXpNWyQFElUAtny3HGiZfETu0Eyr_Hq5bSRdgHj2aeecceT5Y9L4sV5yV_82W7vfyUb65WpOCPsmNMeJUzIfDjB_ZRdhrjriiKkpVpiafZESF1WQlWH2fDGo1K99YBGkAFZ12HTFAj_PThOzI-oLkHNAVorZ6td8gbpPvgRzVbl-JDu89I5rvgo596Oyi0xL0PJtuBg9lqZEDNS4D4LHti1BDh9O48yb69337dfMwvPn8436wvck1xzXONORQVLQBD06RbU1VSahjBVKkUUTUIDgIUaVpRGNNqoRhuNG9qzKDinJxkb291p6UZodXg5qAGOQU7qvBLemXlYcTZXnb-h-QCU8qqJPDqTiD46wXiLEcbNQyDcuCXKDEr6lpUNREJffkPuvNLcOl5EtOKMV7WlP2lOjWAtM74VFfvReW6ogRXJRZ1olb_odJuYbTaOzA2-Q8SXh8kJGaGm7lTS4zy_OrykD27ZXX6qRjA3PejLOR-mOQEEHZSR5mGKeEvHvbwHv4zOuQ31vjFwQ</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Rozenwald, Michal B</creator><creator>Galitsyna, Aleksandra A</creator><creator>Sapunov, Grigory V</creator><creator>Khrameeva, Ekaterina E</creator><creator>Gelfand, Mikhail S</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201130</creationdate><title>A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features</title><author>Rozenwald, Michal B ; Galitsyna, Aleksandra A ; Sapunov, Grigory V ; Khrameeva, Ekaterina E ; Gelfand, Mikhail S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Computational Biology</topic><topic>Data Mining and Machine Learning</topic><topic>Data Science</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>Domains</topic><topic>Drosophila</topic><topic>Dynamic programming</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Folding</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Genes</topic><topic>Genomes</topic><topic>Innovations</topic><topic>Insects</topic><topic>Machine learning</topic><topic>Mammals</topic><topic>Molecular Biology</topic><topic>Neural networks</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Recurrent neural networks</topic><topic>Regression models</topic><topic>Regularization</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozenwald, Michal B</creatorcontrib><creatorcontrib>Galitsyna, Aleksandra A</creatorcontrib><creatorcontrib>Sapunov, Grigory V</creatorcontrib><creatorcontrib>Khrameeva, Ekaterina E</creatorcontrib><creatorcontrib>Gelfand, Mikhail S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozenwald, Michal B</au><au>Galitsyna, Aleksandra A</au><au>Sapunov, Grigory V</au><au>Khrameeva, Ekaterina E</au><au>Gelfand, Mikhail S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>6</volume><spage>e307</spage><epage>e307</epage><pages>e307-e307</pages><artnum>e307</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns in
based on chromatin marks across three cell lines. We present linear regression models with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation data. The bidirectional long short-term memory RNN architecture produced the best prediction scores and identified biologically relevant features. Distribution of protein Chriz (Chromator) and histone modification H3K4me3 were selected as the most informative features for the prediction of TADs characteristics. This approach may be adapted to any similar biological dataset of chromatin features across various cell lines and species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>33816958</pmid><doi>10.7717/PEERJ-CS.307</doi><tpages>e307</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2376-5992 |
ispartof | PeerJ. Computer science, 2020-11, Vol.6, p.e307-e307, Article e307 |
issn | 2376-5992 2376-5992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924456 |
source | PubMed Central Free; ProQuest - Publicly Available Content Database |
subjects | Analysis Artificial neural networks Binding sites Bioinformatics Biotechnology Chromatin Chromosomes Computational Biology Data Mining and Machine Learning Data Science Datasets Deoxyribonucleic acid DNA DNA binding proteins Domains Drosophila Dynamic programming Epigenetic inheritance Epigenetics Folding Fruit flies Gene expression Generalized linear models Genes Genomes Innovations Insects Machine learning Mammals Molecular Biology Neural networks Protein binding Proteins Recurrent neural networks Regression models Regularization RNA polymerase |
title | A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20framework%20for%20the%20prediction%20of%20chromatin%20folding%20in%20Drosophila%20using%20epigenetic%20features&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Rozenwald,%20Michal%20B&rft.date=2020-11-30&rft.volume=6&rft.spage=e307&rft.epage=e307&rft.pages=e307-e307&rft.artnum=e307&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/PEERJ-CS.307&rft_dat=%3Cgale_pubme%3EA643261298%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4287-c27e0640e2ebb0154a144f5324aa7e0a8e97e9ea3bd90ffdc9a52bc7b825e6773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465571845&rft_id=info:pmid/33816958&rft_galeid=A643261298&rfr_iscdi=true |