Loading…

DrugRepV: a compendium of repurposed drugs and chemicals targeting epidemic and pandemic viruses

Abstract Viruses are responsible for causing various epidemics and pandemics with a high mortality rate e.g. ongoing SARS-CoronaVirus-2 crisis. The discovery of novel antivirals remains a challenge but drug repurposing is emerging as a potential solution to develop antivirals in a cost-effective man...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in Bioinformatics 2021-03, Vol.22 (2), p.1076-1084
Main Authors: Rajput, Akanksha, Kumar, Archit, Megha, Kirti, Thakur, Anamika, Kumar, Manoj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Viruses are responsible for causing various epidemics and pandemics with a high mortality rate e.g. ongoing SARS-CoronaVirus-2 crisis. The discovery of novel antivirals remains a challenge but drug repurposing is emerging as a potential solution to develop antivirals in a cost-effective manner. In this regard, we collated the information of repurposed drugs tested for antiviral activity from literature and presented it in the form of a user-friendly web server named ‘DrugRepV’. The database contains 8485 entries (3448 unique) with biological, chemical, clinical and structural information of 23 viruses responsible to cause epidemics/pandemics. The database harbors browse and search options to explore the repurposed drug entries. The data can be explored by some important fields like drugs, viruses, drug targets, clinical trials, assays, etc. For summarizing the data, we provide overall statistics of the repurposed candidates. To make the database more informative, it is hyperlinked to various external repositories like DrugBank, PubChem, NCBI-Taxonomy, Clinicaltrials.gov, World Health Organization and many more. ‘DrugRepV’ database (https://bioinfo.imtech.res.in/manojk/drugrepv/) would be highly useful to the research community working to develop antivirals.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbaa421