Loading…

Structure and regulation of phospholipase Cβ and ε at the membrane

•Biophysical studies of phospholipase C (PLC) β and ε subfamilies reveal new insights into basal and G protein-dependent regulation.•The properties of the membrane, including its phosphatidylinositol concentration and distribution, regulate PLC function.•The membrane and G proteins coregulate PLC, a...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry and physics of lipids 2021-03, Vol.235, p.105050-105050, Article 105050
Main Authors: Muralidharan, Kaushik, Van Camp, Michelle M., Lyon, Angeline M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213
cites cdi_FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213
container_end_page 105050
container_issue
container_start_page 105050
container_title Chemistry and physics of lipids
container_volume 235
creator Muralidharan, Kaushik
Van Camp, Michelle M.
Lyon, Angeline M.
description •Biophysical studies of phospholipase C (PLC) β and ε subfamilies reveal new insights into basal and G protein-dependent regulation.•The properties of the membrane, including its phosphatidylinositol concentration and distribution, regulate PLC function.•The membrane and G proteins coregulate PLC, as membrane association or G protein binding is insufficient for full activation.•The conformational heterogeneity of these enzymes contributes to basal activity, membrane association and G protein activation. Phospholipase C (PLC) β and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCβ and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.
doi_str_mv 10.1016/j.chemphyslip.2021.105050
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7933103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009308421000037</els_id><sourcerecordid>2476851631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213</originalsourceid><addsrcrecordid>eNqNkctq3DAUhkVJyUyTvEJxdtl4qpsv2gTCpDcIdJFkLWT5eKzBthxJHshrFfoaeabKmWSY7ooQQtJ3_l86P0KXBK8IJvmX7Uq30I_ts-_MuKKYkniexfEBLUlZsJQKTk7QEmMsUoZLvkCfvN_GLc4ycooWjHFKM14s0e19cJMOk4NEDXXiYDN1Khg7JLZJxtb6OKOJ8pCsX36_Mi9_EhWS0ELSQ185NcA5-tiozsPF23qGHr99fVj_SO9-ff-5vrlLNS9ZSBtRikqUJSVcEF5leQUVrnidQ64pVaxqKNGY02bG80zxhquC41w1BcOCEnaGrve641T1UGsYglOdHJ3plXuWVhn5781gWrmxO1kIxghmUeDqTcDZpwl8kL3xGroufsJOXlJe5GVGcjZ7iT2qnfXeQXOwIVjOKcitPEpBzinIfQqx9vPxOw-V722PwHoPQOzWzoCTXhsYNNTGgQ6ytuY_bP4C_X6gmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476851631</pqid></control><display><type>article</type><title>Structure and regulation of phospholipase Cβ and ε at the membrane</title><source>ScienceDirect Journals</source><creator>Muralidharan, Kaushik ; Van Camp, Michelle M. ; Lyon, Angeline M.</creator><creatorcontrib>Muralidharan, Kaushik ; Van Camp, Michelle M. ; Lyon, Angeline M.</creatorcontrib><description>•Biophysical studies of phospholipase C (PLC) β and ε subfamilies reveal new insights into basal and G protein-dependent regulation.•The properties of the membrane, including its phosphatidylinositol concentration and distribution, regulate PLC function.•The membrane and G proteins coregulate PLC, as membrane association or G protein binding is insufficient for full activation.•The conformational heterogeneity of these enzymes contributes to basal activity, membrane association and G protein activation. Phospholipase C (PLC) β and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCβ and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.</description><identifier>ISSN: 0009-3084</identifier><identifier>EISSN: 1873-2941</identifier><identifier>DOI: 10.1016/j.chemphyslip.2021.105050</identifier><identifier>PMID: 33422547</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Allosteric activation ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Diacylglycerol (DAG) ; Humans ; Inositol-1,4,5-triphosphate (IP3) ; Interfacial activation ; Models, Molecular ; Phosphatidylinositol-4,5-bisphosphate (PIP2) ; Phosphoinositide Phospholipase C - chemistry ; Phosphoinositide Phospholipase C - metabolism ; Phospholipase C ; Phospholipase C beta - chemistry ; Phospholipase C beta - metabolism ; Protein Conformation</subject><ispartof>Chemistry and physics of lipids, 2021-03, Vol.235, p.105050-105050, Article 105050</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213</citedby><cites>FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213</cites><orcidid>0000-0001-7501-0148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33422547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muralidharan, Kaushik</creatorcontrib><creatorcontrib>Van Camp, Michelle M.</creatorcontrib><creatorcontrib>Lyon, Angeline M.</creatorcontrib><title>Structure and regulation of phospholipase Cβ and ε at the membrane</title><title>Chemistry and physics of lipids</title><addtitle>Chem Phys Lipids</addtitle><description>•Biophysical studies of phospholipase C (PLC) β and ε subfamilies reveal new insights into basal and G protein-dependent regulation.•The properties of the membrane, including its phosphatidylinositol concentration and distribution, regulate PLC function.•The membrane and G proteins coregulate PLC, as membrane association or G protein binding is insufficient for full activation.•The conformational heterogeneity of these enzymes contributes to basal activity, membrane association and G protein activation. Phospholipase C (PLC) β and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCβ and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.</description><subject>Allosteric activation</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Diacylglycerol (DAG)</subject><subject>Humans</subject><subject>Inositol-1,4,5-triphosphate (IP3)</subject><subject>Interfacial activation</subject><subject>Models, Molecular</subject><subject>Phosphatidylinositol-4,5-bisphosphate (PIP2)</subject><subject>Phosphoinositide Phospholipase C - chemistry</subject><subject>Phosphoinositide Phospholipase C - metabolism</subject><subject>Phospholipase C</subject><subject>Phospholipase C beta - chemistry</subject><subject>Phospholipase C beta - metabolism</subject><subject>Protein Conformation</subject><issn>0009-3084</issn><issn>1873-2941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkctq3DAUhkVJyUyTvEJxdtl4qpsv2gTCpDcIdJFkLWT5eKzBthxJHshrFfoaeabKmWSY7ooQQtJ3_l86P0KXBK8IJvmX7Uq30I_ts-_MuKKYkniexfEBLUlZsJQKTk7QEmMsUoZLvkCfvN_GLc4ycooWjHFKM14s0e19cJMOk4NEDXXiYDN1Khg7JLZJxtb6OKOJ8pCsX36_Mi9_EhWS0ELSQ185NcA5-tiozsPF23qGHr99fVj_SO9-ff-5vrlLNS9ZSBtRikqUJSVcEF5leQUVrnidQ64pVaxqKNGY02bG80zxhquC41w1BcOCEnaGrve641T1UGsYglOdHJ3plXuWVhn5781gWrmxO1kIxghmUeDqTcDZpwl8kL3xGroufsJOXlJe5GVGcjZ7iT2qnfXeQXOwIVjOKcitPEpBzinIfQqx9vPxOw-V722PwHoPQOzWzoCTXhsYNNTGgQ6ytuY_bP4C_X6gmQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Muralidharan, Kaushik</creator><creator>Van Camp, Michelle M.</creator><creator>Lyon, Angeline M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7501-0148</orcidid></search><sort><creationdate>20210301</creationdate><title>Structure and regulation of phospholipase Cβ and ε at the membrane</title><author>Muralidharan, Kaushik ; Van Camp, Michelle M. ; Lyon, Angeline M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allosteric activation</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Diacylglycerol (DAG)</topic><topic>Humans</topic><topic>Inositol-1,4,5-triphosphate (IP3)</topic><topic>Interfacial activation</topic><topic>Models, Molecular</topic><topic>Phosphatidylinositol-4,5-bisphosphate (PIP2)</topic><topic>Phosphoinositide Phospholipase C - chemistry</topic><topic>Phosphoinositide Phospholipase C - metabolism</topic><topic>Phospholipase C</topic><topic>Phospholipase C beta - chemistry</topic><topic>Phospholipase C beta - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muralidharan, Kaushik</creatorcontrib><creatorcontrib>Van Camp, Michelle M.</creatorcontrib><creatorcontrib>Lyon, Angeline M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry and physics of lipids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muralidharan, Kaushik</au><au>Van Camp, Michelle M.</au><au>Lyon, Angeline M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and regulation of phospholipase Cβ and ε at the membrane</atitle><jtitle>Chemistry and physics of lipids</jtitle><addtitle>Chem Phys Lipids</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>235</volume><spage>105050</spage><epage>105050</epage><pages>105050-105050</pages><artnum>105050</artnum><issn>0009-3084</issn><eissn>1873-2941</eissn><abstract>•Biophysical studies of phospholipase C (PLC) β and ε subfamilies reveal new insights into basal and G protein-dependent regulation.•The properties of the membrane, including its phosphatidylinositol concentration and distribution, regulate PLC function.•The membrane and G proteins coregulate PLC, as membrane association or G protein binding is insufficient for full activation.•The conformational heterogeneity of these enzymes contributes to basal activity, membrane association and G protein activation. Phospholipase C (PLC) β and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCβ and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>33422547</pmid><doi>10.1016/j.chemphyslip.2021.105050</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7501-0148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-3084
ispartof Chemistry and physics of lipids, 2021-03, Vol.235, p.105050-105050, Article 105050
issn 0009-3084
1873-2941
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7933103
source ScienceDirect Journals
subjects Allosteric activation
Cell Membrane - chemistry
Cell Membrane - metabolism
Diacylglycerol (DAG)
Humans
Inositol-1,4,5-triphosphate (IP3)
Interfacial activation
Models, Molecular
Phosphatidylinositol-4,5-bisphosphate (PIP2)
Phosphoinositide Phospholipase C - chemistry
Phosphoinositide Phospholipase C - metabolism
Phospholipase C
Phospholipase C beta - chemistry
Phospholipase C beta - metabolism
Protein Conformation
title Structure and regulation of phospholipase Cβ and ε at the membrane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20regulation%20of%20phospholipase%20C%CE%B2%20and%20%CE%B5%20at%20the%20membrane&rft.jtitle=Chemistry%20and%20physics%20of%20lipids&rft.au=Muralidharan,%20Kaushik&rft.date=2021-03-01&rft.volume=235&rft.spage=105050&rft.epage=105050&rft.pages=105050-105050&rft.artnum=105050&rft.issn=0009-3084&rft.eissn=1873-2941&rft_id=info:doi/10.1016/j.chemphyslip.2021.105050&rft_dat=%3Cproquest_pubme%3E2476851631%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-f989b988214914b56beb0b4d6e6c22a3bf21c042fc48365a4f4a7406af7309213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476851631&rft_id=info:pmid/33422547&rfr_iscdi=true