Loading…

Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields

Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-03, Vol.7 (10)
Main Authors: Zhan, Chao, Wang, Qiu-Xiang, Yi, Jun, Chen, Liang, Wu, De-Yin, Wang, Ye, Xie, Zhao-Xiong, Moskovits, Martin, Tian, Zhong-Qun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53
cites cdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53
container_end_page
container_issue 10
container_start_page
container_title Science advances
container_volume 7
creator Zhan, Chao
Wang, Qiu-Xiang
Yi, Jun
Chen, Liang
Wu, De-Yin
Wang, Ye
Xie, Zhao-Xiong
Moskovits, Martin
Tian, Zhong-Qun
description Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO , resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.
doi_str_mv 10.1126/sciadv.abf0962
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7935359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33674315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</originalsourceid><addsrcrecordid>eNpVkEtLAzEQx4MoVmqvHiVfYGt2k-w2F0GKLyjoofclj8k2spuUZFvst3dta6mnGeb_GPghdJeTaZ4X5UPSTprtVCpLRFlcoJuCVjwrOJtdnu0jNEnpixCSs7LkubhGI0rLitGc36D2s5WpC95p7KUPEaTuQ0w4QrNpZe98gxO0oHu3BRy-nRluwWO1w-AhNtAPwb0eg09YerOv0cFb58HgfgWxky22DlqTbtGVlW2CyXGO0fLleTl_yxYfr-_zp0WmqSB9ZrQohKKMEW4klJZSUUpjDJPFjAgLM1ExwYlRTCghrRCVoopbo6kdbJyO0eOhdr1RHRgNvo-yrdfRdTLu6iBd_V_xblU3YVtXgnLKxVAwPRToGFKKYE_ZnNS_5OsD-fpIfgjcn3882f840x98iYa1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Zhan, Chao ; Wang, Qiu-Xiang ; Yi, Jun ; Chen, Liang ; Wu, De-Yin ; Wang, Ye ; Xie, Zhao-Xiong ; Moskovits, Martin ; Tian, Zhong-Qun</creator><creatorcontrib>Zhan, Chao ; Wang, Qiu-Xiang ; Yi, Jun ; Chen, Liang ; Wu, De-Yin ; Wang, Ye ; Xie, Zhao-Xiong ; Moskovits, Martin ; Tian, Zhong-Qun</creatorcontrib><description>Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO , resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abf0962</identifier><identifier>PMID: 33674315</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Chemistry ; Physical Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2021-03, Vol.7 (10)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</citedby><cites>FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</cites><orcidid>0000-0003-2186-6615 ; 0000-0001-5260-2861 ; 0000-0002-9775-8189 ; 0000-0002-0212-108X ; 0000-0002-1941-7960 ; 0000-0003-0764-2279 ; 0000-0002-4225-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935359/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935359/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2882,2883,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33674315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qiu-Xiang</creatorcontrib><creatorcontrib>Yi, Jun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Wu, De-Yin</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Xie, Zhao-Xiong</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><title>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO , resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.</description><subject>Chemistry</subject><subject>Physical Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEQx4MoVmqvHiVfYGt2k-w2F0GKLyjoofclj8k2spuUZFvst3dta6mnGeb_GPghdJeTaZ4X5UPSTprtVCpLRFlcoJuCVjwrOJtdnu0jNEnpixCSs7LkubhGI0rLitGc36D2s5WpC95p7KUPEaTuQ0w4QrNpZe98gxO0oHu3BRy-nRluwWO1w-AhNtAPwb0eg09YerOv0cFb58HgfgWxky22DlqTbtGVlW2CyXGO0fLleTl_yxYfr-_zp0WmqSB9ZrQohKKMEW4klJZSUUpjDJPFjAgLM1ExwYlRTCghrRCVoopbo6kdbJyO0eOhdr1RHRgNvo-yrdfRdTLu6iBd_V_xblU3YVtXgnLKxVAwPRToGFKKYE_ZnNS_5OsD-fpIfgjcn3882f840x98iYa1</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhan, Chao</creator><creator>Wang, Qiu-Xiang</creator><creator>Yi, Jun</creator><creator>Chen, Liang</creator><creator>Wu, De-Yin</creator><creator>Wang, Ye</creator><creator>Xie, Zhao-Xiong</creator><creator>Moskovits, Martin</creator><creator>Tian, Zhong-Qun</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2186-6615</orcidid><orcidid>https://orcid.org/0000-0001-5260-2861</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0002-0212-108X</orcidid><orcidid>https://orcid.org/0000-0002-1941-7960</orcidid><orcidid>https://orcid.org/0000-0003-0764-2279</orcidid><orcidid>https://orcid.org/0000-0002-4225-6536</orcidid></search><sort><creationdate>20210301</creationdate><title>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</title><author>Zhan, Chao ; Wang, Qiu-Xiang ; Yi, Jun ; Chen, Liang ; Wu, De-Yin ; Wang, Ye ; Xie, Zhao-Xiong ; Moskovits, Martin ; Tian, Zhong-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Physical Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qiu-Xiang</creatorcontrib><creatorcontrib>Yi, Jun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Wu, De-Yin</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Xie, Zhao-Xiong</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Chao</au><au>Wang, Qiu-Xiang</au><au>Yi, Jun</au><au>Chen, Liang</au><au>Wu, De-Yin</au><au>Wang, Ye</au><au>Xie, Zhao-Xiong</au><au>Moskovits, Martin</au><au>Tian, Zhong-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>7</volume><issue>10</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO , resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33674315</pmid><doi>10.1126/sciadv.abf0962</doi><orcidid>https://orcid.org/0000-0003-2186-6615</orcidid><orcidid>https://orcid.org/0000-0001-5260-2861</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0002-0212-108X</orcidid><orcidid>https://orcid.org/0000-0002-1941-7960</orcidid><orcidid>https://orcid.org/0000-0003-0764-2279</orcidid><orcidid>https://orcid.org/0000-0002-4225-6536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-03, Vol.7 (10)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7935359
source American Association for the Advancement of Science; PubMed Central
subjects Chemistry
Physical Sciences
SciAdv r-articles
title Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20nanoreactors%20regulating%20selective%20oxidation%20by%20energetic%20electrons%20and%20nanoconfined%20thermal%20fields&rft.jtitle=Science%20advances&rft.au=Zhan,%20Chao&rft.date=2021-03-01&rft.volume=7&rft.issue=10&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abf0962&rft_dat=%3Cpubmed_cross%3E33674315%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33674315&rfr_iscdi=true