Loading…
Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields
Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the...
Saved in:
Published in: | Science advances 2021-03, Vol.7 (10) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Zhan, Chao Wang, Qiu-Xiang Yi, Jun Chen, Liang Wu, De-Yin Wang, Ye Xie, Zhao-Xiong Moskovits, Martin Tian, Zhong-Qun |
description | Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO
, resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination. |
doi_str_mv | 10.1126/sciadv.abf0962 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7935359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33674315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</originalsourceid><addsrcrecordid>eNpVkEtLAzEQx4MoVmqvHiVfYGt2k-w2F0GKLyjoofclj8k2spuUZFvst3dta6mnGeb_GPghdJeTaZ4X5UPSTprtVCpLRFlcoJuCVjwrOJtdnu0jNEnpixCSs7LkubhGI0rLitGc36D2s5WpC95p7KUPEaTuQ0w4QrNpZe98gxO0oHu3BRy-nRluwWO1w-AhNtAPwb0eg09YerOv0cFb58HgfgWxky22DlqTbtGVlW2CyXGO0fLleTl_yxYfr-_zp0WmqSB9ZrQohKKMEW4klJZSUUpjDJPFjAgLM1ExwYlRTCghrRCVoopbo6kdbJyO0eOhdr1RHRgNvo-yrdfRdTLu6iBd_V_xblU3YVtXgnLKxVAwPRToGFKKYE_ZnNS_5OsD-fpIfgjcn3882f840x98iYa1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Zhan, Chao ; Wang, Qiu-Xiang ; Yi, Jun ; Chen, Liang ; Wu, De-Yin ; Wang, Ye ; Xie, Zhao-Xiong ; Moskovits, Martin ; Tian, Zhong-Qun</creator><creatorcontrib>Zhan, Chao ; Wang, Qiu-Xiang ; Yi, Jun ; Chen, Liang ; Wu, De-Yin ; Wang, Ye ; Xie, Zhao-Xiong ; Moskovits, Martin ; Tian, Zhong-Qun</creatorcontrib><description>Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO
, resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abf0962</identifier><identifier>PMID: 33674315</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Chemistry ; Physical Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2021-03, Vol.7 (10)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</citedby><cites>FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</cites><orcidid>0000-0003-2186-6615 ; 0000-0001-5260-2861 ; 0000-0002-9775-8189 ; 0000-0002-0212-108X ; 0000-0002-1941-7960 ; 0000-0003-0764-2279 ; 0000-0002-4225-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935359/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935359/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2882,2883,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33674315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qiu-Xiang</creatorcontrib><creatorcontrib>Yi, Jun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Wu, De-Yin</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Xie, Zhao-Xiong</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><title>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO
, resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.</description><subject>Chemistry</subject><subject>Physical Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEQx4MoVmqvHiVfYGt2k-w2F0GKLyjoofclj8k2spuUZFvst3dta6mnGeb_GPghdJeTaZ4X5UPSTprtVCpLRFlcoJuCVjwrOJtdnu0jNEnpixCSs7LkubhGI0rLitGc36D2s5WpC95p7KUPEaTuQ0w4QrNpZe98gxO0oHu3BRy-nRluwWO1w-AhNtAPwb0eg09YerOv0cFb58HgfgWxky22DlqTbtGVlW2CyXGO0fLleTl_yxYfr-_zp0WmqSB9ZrQohKKMEW4klJZSUUpjDJPFjAgLM1ExwYlRTCghrRCVoopbo6kdbJyO0eOhdr1RHRgNvo-yrdfRdTLu6iBd_V_xblU3YVtXgnLKxVAwPRToGFKKYE_ZnNS_5OsD-fpIfgjcn3882f840x98iYa1</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhan, Chao</creator><creator>Wang, Qiu-Xiang</creator><creator>Yi, Jun</creator><creator>Chen, Liang</creator><creator>Wu, De-Yin</creator><creator>Wang, Ye</creator><creator>Xie, Zhao-Xiong</creator><creator>Moskovits, Martin</creator><creator>Tian, Zhong-Qun</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2186-6615</orcidid><orcidid>https://orcid.org/0000-0001-5260-2861</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0002-0212-108X</orcidid><orcidid>https://orcid.org/0000-0002-1941-7960</orcidid><orcidid>https://orcid.org/0000-0003-0764-2279</orcidid><orcidid>https://orcid.org/0000-0002-4225-6536</orcidid></search><sort><creationdate>20210301</creationdate><title>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</title><author>Zhan, Chao ; Wang, Qiu-Xiang ; Yi, Jun ; Chen, Liang ; Wu, De-Yin ; Wang, Ye ; Xie, Zhao-Xiong ; Moskovits, Martin ; Tian, Zhong-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Physical Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Chao</creatorcontrib><creatorcontrib>Wang, Qiu-Xiang</creatorcontrib><creatorcontrib>Yi, Jun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Wu, De-Yin</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Xie, Zhao-Xiong</creatorcontrib><creatorcontrib>Moskovits, Martin</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Chao</au><au>Wang, Qiu-Xiang</au><au>Yi, Jun</au><au>Chen, Liang</au><au>Wu, De-Yin</au><au>Wang, Ye</au><au>Xie, Zhao-Xiong</au><au>Moskovits, Martin</au><au>Tian, Zhong-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>7</volume><issue>10</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO
, resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33674315</pmid><doi>10.1126/sciadv.abf0962</doi><orcidid>https://orcid.org/0000-0003-2186-6615</orcidid><orcidid>https://orcid.org/0000-0001-5260-2861</orcidid><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0002-0212-108X</orcidid><orcidid>https://orcid.org/0000-0002-1941-7960</orcidid><orcidid>https://orcid.org/0000-0003-0764-2279</orcidid><orcidid>https://orcid.org/0000-0002-4225-6536</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-03, Vol.7 (10) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7935359 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Chemistry Physical Sciences SciAdv r-articles |
title | Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20nanoreactors%20regulating%20selective%20oxidation%20by%20energetic%20electrons%20and%20nanoconfined%20thermal%20fields&rft.jtitle=Science%20advances&rft.au=Zhan,%20Chao&rft.date=2021-03-01&rft.volume=7&rft.issue=10&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abf0962&rft_dat=%3Cpubmed_cross%3E33674315%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-dc929b34405dae6f3396addd4a2809fe8974950db49b9af997b3b5fdc3fadd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33674315&rfr_iscdi=true |