Loading…

Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth

Acetogenic bacteria use cellular redox energy to convert CO₂ to acetate using the Wood–Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H₂ as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybri...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-03, Vol.118 (9), p.1-7
Main Authors: Jin, Sangrak, Jeon, Yale, Jeon, Min Soo, Shin, Jongoh, Song, Yoseb, Kang, Seulgi, Bae, Jiyun, Cho, Suhyung, Lee, Jung-Kul, Kim, Dong Rip, Cho, Byung-Kwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3
cites cdi_FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3
container_end_page 7
container_issue 9
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Jin, Sangrak
Jeon, Yale
Jeon, Min Soo
Shin, Jongoh
Song, Yoseb
Kang, Seulgi
Bae, Jiyun
Cho, Suhyung
Lee, Jung-Kul
Kim, Dong Rip
Cho, Byung-Kwan
description Acetogenic bacteria use cellular redox energy to convert CO₂ to acetate using the Wood–Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H₂ as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum. The hybrid system converts CO₂ into acetate without the need for additional energy sources, such as H₂, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO₂, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO² fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.
doi_str_mv 10.1073/pnas.2020552118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27027395</jstor_id><sourcerecordid>27027395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3</originalsourceid><addsrcrecordid>eNpVkUFrGzEQhUVpaBy3555a9tjLJiNppZUuhRDaJhDIJTkWIcujtcJ65UrahOTXZ41dJ4GBYZhv3gzzCPlK4ZRCy882g82nDBgIwShVH8iMgqa1bDR8JDMA1taqYc0xOcn5HgC0UPCJHHMuqQatZuTvucMSOxyCqxbWFUzBVmMJfXjGqg_dqtTLFB5wqLBHV1IccmWnmOoBU_dU5Tgmh5WPqbJjiROxWU1aXYqPZfWZHHnbZ_yyz3Ny9_vX7cVlfX3z5-ri_Lp2DRWlRsoo-kYogd4tNGu5lt5K1mjvvAJrnbYcW2GVWFDJuFLLpadUuAZc65Tlc_Jzp7sZF2tcOhxKsr3ZpLC26clEG8z7zhBWposPptVc8qadBH7sBVL8N2IuZh2yw763A8Yxm-kUJiWVsEXPdqhLMeeE_rCGgtmaYrammFdTponvb6878P9dmIBvO-A-l5gOfdbC9hWCvwDThZU_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492661607</pqid></control><display><type>article</type><title>Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Jin, Sangrak ; Jeon, Yale ; Jeon, Min Soo ; Shin, Jongoh ; Song, Yoseb ; Kang, Seulgi ; Bae, Jiyun ; Cho, Suhyung ; Lee, Jung-Kul ; Kim, Dong Rip ; Cho, Byung-Kwan</creator><creatorcontrib>Jin, Sangrak ; Jeon, Yale ; Jeon, Min Soo ; Shin, Jongoh ; Song, Yoseb ; Kang, Seulgi ; Bae, Jiyun ; Cho, Suhyung ; Lee, Jung-Kul ; Kim, Dong Rip ; Cho, Byung-Kwan</creatorcontrib><description>Acetogenic bacteria use cellular redox energy to convert CO₂ to acetate using the Wood–Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H₂ as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum. The hybrid system converts CO₂ into acetate without the need for additional energy sources, such as H₂, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO₂, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO² fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2020552118</identifier><identifier>PMID: 33619098</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (9), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3</citedby><cites>FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3</cites><orcidid>0000-0001-7384-5301 ; 0000-0003-4363-5148 ; 0000-0001-6398-9483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27027395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27027395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33619098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Sangrak</creatorcontrib><creatorcontrib>Jeon, Yale</creatorcontrib><creatorcontrib>Jeon, Min Soo</creatorcontrib><creatorcontrib>Shin, Jongoh</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Kang, Seulgi</creatorcontrib><creatorcontrib>Bae, Jiyun</creatorcontrib><creatorcontrib>Cho, Suhyung</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><creatorcontrib>Kim, Dong Rip</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><title>Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Acetogenic bacteria use cellular redox energy to convert CO₂ to acetate using the Wood–Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H₂ as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum. The hybrid system converts CO₂ into acetate without the need for additional energy sources, such as H₂, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO₂, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO² fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.</description><subject>Biological Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkUFrGzEQhUVpaBy3555a9tjLJiNppZUuhRDaJhDIJTkWIcujtcJ65UrahOTXZ41dJ4GBYZhv3gzzCPlK4ZRCy882g82nDBgIwShVH8iMgqa1bDR8JDMA1taqYc0xOcn5HgC0UPCJHHMuqQatZuTvucMSOxyCqxbWFUzBVmMJfXjGqg_dqtTLFB5wqLBHV1IccmWnmOoBU_dU5Tgmh5WPqbJjiROxWU1aXYqPZfWZHHnbZ_yyz3Ny9_vX7cVlfX3z5-ri_Lp2DRWlRsoo-kYogd4tNGu5lt5K1mjvvAJrnbYcW2GVWFDJuFLLpadUuAZc65Tlc_Jzp7sZF2tcOhxKsr3ZpLC26clEG8z7zhBWposPptVc8qadBH7sBVL8N2IuZh2yw763A8Yxm-kUJiWVsEXPdqhLMeeE_rCGgtmaYrammFdTponvb6878P9dmIBvO-A-l5gOfdbC9hWCvwDThZU_</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Jin, Sangrak</creator><creator>Jeon, Yale</creator><creator>Jeon, Min Soo</creator><creator>Shin, Jongoh</creator><creator>Song, Yoseb</creator><creator>Kang, Seulgi</creator><creator>Bae, Jiyun</creator><creator>Cho, Suhyung</creator><creator>Lee, Jung-Kul</creator><creator>Kim, Dong Rip</creator><creator>Cho, Byung-Kwan</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7384-5301</orcidid><orcidid>https://orcid.org/0000-0003-4363-5148</orcidid><orcidid>https://orcid.org/0000-0001-6398-9483</orcidid></search><sort><creationdate>20210302</creationdate><title>Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth</title><author>Jin, Sangrak ; Jeon, Yale ; Jeon, Min Soo ; Shin, Jongoh ; Song, Yoseb ; Kang, Seulgi ; Bae, Jiyun ; Cho, Suhyung ; Lee, Jung-Kul ; Kim, Dong Rip ; Cho, Byung-Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Sangrak</creatorcontrib><creatorcontrib>Jeon, Yale</creatorcontrib><creatorcontrib>Jeon, Min Soo</creatorcontrib><creatorcontrib>Shin, Jongoh</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Kang, Seulgi</creatorcontrib><creatorcontrib>Bae, Jiyun</creatorcontrib><creatorcontrib>Cho, Suhyung</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><creatorcontrib>Kim, Dong Rip</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Sangrak</au><au>Jeon, Yale</au><au>Jeon, Min Soo</au><au>Shin, Jongoh</au><au>Song, Yoseb</au><au>Kang, Seulgi</au><au>Bae, Jiyun</au><au>Cho, Suhyung</au><au>Lee, Jung-Kul</au><au>Kim, Dong Rip</au><au>Cho, Byung-Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-03-02</date><risdate>2021</risdate><volume>118</volume><issue>9</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Acetogenic bacteria use cellular redox energy to convert CO₂ to acetate using the Wood–Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H₂ as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum. The hybrid system converts CO₂ into acetate without the need for additional energy sources, such as H₂, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO₂, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO² fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33619098</pmid><doi>10.1073/pnas.2020552118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7384-5301</orcidid><orcidid>https://orcid.org/0000-0003-4363-5148</orcidid><orcidid>https://orcid.org/0000-0001-6398-9483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (9), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936347
source JSTOR Archival Journals; PubMed Central
subjects Biological Sciences
title Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetogenic%20bacteria%20utilize%20light-driven%20electrons%20as%20an%20energy%20source%20for%20autotrophic%20growth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jin,%20Sangrak&rft.date=2021-03-02&rft.volume=118&rft.issue=9&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2020552118&rft_dat=%3Cjstor_pubme%3E27027395%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-e121ef4585efcb927396fa6249fcf80aac9a3e75a85b162388ddf115c40c7c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492661607&rft_id=info:pmid/33619098&rft_jstor_id=27027395&rfr_iscdi=true