Loading…
The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens
α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galac...
Saved in:
Published in: | The Journal of biological chemistry 2020-12, Vol.295 (52), p.18426-18435 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03 |
container_end_page | 18435 |
container_issue | 52 |
container_start_page | 18426 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | McGuire, Bailey E. Hettle, Andrew G. Vickers, Chelsea King, Dustin T. Vocadlo, David J. Boraston, Alisdair B. |
description | α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole. |
doi_str_mv | 10.1074/jbc.RA120.015776 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817507097</els_id><sourcerecordid>2456430707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</originalsourceid><addsrcrecordid>eNp1kc2OFCEURonROO3o3pVh6cJqoQqKKhcmk4l_ySQmZkzcEYq6VDPS0ALVST2Oj-Dad5hnkp6emehCNjcXzj0QPoSeU7KmRLDXV4NefzmjNVkTyoVoH6AVJV1TNZx-e4hWhNS06mvenaAnKV2RslhPH6OTpqG1aBlboZ-XG8Apx1nnOQIOBits1Na6BVNK8OQWHZIdAW-WMQanEuBdDPuyk7D1yU6bXGoOOG_umCXZdBBd_6roq6aalFM6HyRWY2f9dzXdzOLr35VWMZYWvPJY-REPLoQRTzHMu9JnO4FPT9Ejo1yCZ7f1FH19_-7y_GN18fnDp_Ozi0o3QuSKUWNAdZwNwA0XgzaKG2O0qrkm_UioaIF2na4paWCgygjTka7n7cAKrEhzit4evbt52MKoweeonNxFu1VxkUFZ-e-Jtxs5hb0UfdMzIYrg5a0ghh8zpCy3NmlwTnkIc5I14y1riCAHlBxRHUNKEcz9NZTIQ7KyJCtvkpXHZMvIi7-fdz9wF2UB3hwBKJ-0txBl0ha8htFG0FmOwf7f_gedFLk1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456430707</pqid></control><display><type>article</type><title>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</title><source>ScienceDirect</source><source>PMC (PubMed Central)</source><creator>McGuire, Bailey E. ; Hettle, Andrew G. ; Vickers, Chelsea ; King, Dustin T. ; Vocadlo, David J. ; Boraston, Alisdair B.</creator><creatorcontrib>McGuire, Bailey E. ; Hettle, Andrew G. ; Vickers, Chelsea ; King, Dustin T. ; Vocadlo, David J. ; Boraston, Alisdair B.</creatorcontrib><description>α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.015776</identifier><identifier>PMID: 33127644</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>blood group antigen ; Blood Group Antigens - chemistry ; Blood Group Antigens - metabolism ; carrageenan ; Carrageenan - chemistry ; Carrageenan - metabolism ; Catalytic Domain ; Crystallography, X-Ray ; enzyme structure ; galactose ; galactosidase ; Galactosides - chemistry ; Galactosides - metabolism ; Glycobiology and Extracellular Matrices ; glycoside hydrolase ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - classification ; Glycoside Hydrolases - metabolism ; Hydrolysis ; Models, Molecular ; Phylogeny ; Protein Conformation ; Pseudoalteromonas ; Pseudoalteromonas - enzymology ; structural biology ; Substrate Specificity ; X-ray crystal structure ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (52), p.18426-18435</ispartof><rights>2020 © 2020 McGuire et al.</rights><rights>2020 McGuire et al.</rights><rights>2020 © 2020 McGuire et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</citedby><cites>FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</cites><orcidid>0000-0001-7147-800X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939477/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925817507097$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33127644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGuire, Bailey E.</creatorcontrib><creatorcontrib>Hettle, Andrew G.</creatorcontrib><creatorcontrib>Vickers, Chelsea</creatorcontrib><creatorcontrib>King, Dustin T.</creatorcontrib><creatorcontrib>Vocadlo, David J.</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><title>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.</description><subject>blood group antigen</subject><subject>Blood Group Antigens - chemistry</subject><subject>Blood Group Antigens - metabolism</subject><subject>carrageenan</subject><subject>Carrageenan - chemistry</subject><subject>Carrageenan - metabolism</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>enzyme structure</subject><subject>galactose</subject><subject>galactosidase</subject><subject>Galactosides - chemistry</subject><subject>Galactosides - metabolism</subject><subject>Glycobiology and Extracellular Matrices</subject><subject>glycoside hydrolase</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - classification</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Phylogeny</subject><subject>Protein Conformation</subject><subject>Pseudoalteromonas</subject><subject>Pseudoalteromonas - enzymology</subject><subject>structural biology</subject><subject>Substrate Specificity</subject><subject>X-ray crystal structure</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc2OFCEURonROO3o3pVh6cJqoQqKKhcmk4l_ySQmZkzcEYq6VDPS0ALVST2Oj-Dad5hnkp6emehCNjcXzj0QPoSeU7KmRLDXV4NefzmjNVkTyoVoH6AVJV1TNZx-e4hWhNS06mvenaAnKV2RslhPH6OTpqG1aBlboZ-XG8Apx1nnOQIOBits1Na6BVNK8OQWHZIdAW-WMQanEuBdDPuyk7D1yU6bXGoOOG_umCXZdBBd_6roq6aalFM6HyRWY2f9dzXdzOLr35VWMZYWvPJY-REPLoQRTzHMu9JnO4FPT9Ejo1yCZ7f1FH19_-7y_GN18fnDp_Ozi0o3QuSKUWNAdZwNwA0XgzaKG2O0qrkm_UioaIF2na4paWCgygjTka7n7cAKrEhzit4evbt52MKoweeonNxFu1VxkUFZ-e-Jtxs5hb0UfdMzIYrg5a0ghh8zpCy3NmlwTnkIc5I14y1riCAHlBxRHUNKEcz9NZTIQ7KyJCtvkpXHZMvIi7-fdz9wF2UB3hwBKJ-0txBl0ha8htFG0FmOwf7f_gedFLk1</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>McGuire, Bailey E.</creator><creator>Hettle, Andrew G.</creator><creator>Vickers, Chelsea</creator><creator>King, Dustin T.</creator><creator>Vocadlo, David J.</creator><creator>Boraston, Alisdair B.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7147-800X</orcidid></search><sort><creationdate>20201225</creationdate><title>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</title><author>McGuire, Bailey E. ; Hettle, Andrew G. ; Vickers, Chelsea ; King, Dustin T. ; Vocadlo, David J. ; Boraston, Alisdair B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>blood group antigen</topic><topic>Blood Group Antigens - chemistry</topic><topic>Blood Group Antigens - metabolism</topic><topic>carrageenan</topic><topic>Carrageenan - chemistry</topic><topic>Carrageenan - metabolism</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>enzyme structure</topic><topic>galactose</topic><topic>galactosidase</topic><topic>Galactosides - chemistry</topic><topic>Galactosides - metabolism</topic><topic>Glycobiology and Extracellular Matrices</topic><topic>glycoside hydrolase</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - classification</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Phylogeny</topic><topic>Protein Conformation</topic><topic>Pseudoalteromonas</topic><topic>Pseudoalteromonas - enzymology</topic><topic>structural biology</topic><topic>Substrate Specificity</topic><topic>X-ray crystal structure</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuire, Bailey E.</creatorcontrib><creatorcontrib>Hettle, Andrew G.</creatorcontrib><creatorcontrib>Vickers, Chelsea</creatorcontrib><creatorcontrib>King, Dustin T.</creatorcontrib><creatorcontrib>Vocadlo, David J.</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGuire, Bailey E.</au><au>Hettle, Andrew G.</au><au>Vickers, Chelsea</au><au>King, Dustin T.</au><au>Vocadlo, David J.</au><au>Boraston, Alisdair B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>295</volume><issue>52</issue><spage>18426</spage><epage>18435</epage><pages>18426-18435</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33127644</pmid><doi>10.1074/jbc.RA120.015776</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7147-800X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-12, Vol.295 (52), p.18426-18435 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939477 |
source | ScienceDirect; PMC (PubMed Central) |
subjects | blood group antigen Blood Group Antigens - chemistry Blood Group Antigens - metabolism carrageenan Carrageenan - chemistry Carrageenan - metabolism Catalytic Domain Crystallography, X-Ray enzyme structure galactose galactosidase Galactosides - chemistry Galactosides - metabolism Glycobiology and Extracellular Matrices glycoside hydrolase Glycoside Hydrolases - chemistry Glycoside Hydrolases - classification Glycoside Hydrolases - metabolism Hydrolysis Models, Molecular Phylogeny Protein Conformation Pseudoalteromonas Pseudoalteromonas - enzymology structural biology Substrate Specificity X-ray crystal structure X-ray crystallography |
title | The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20a%20family%20110%20glycoside%20hydrolase%20provides%20insight%20into%20the%20hydrolysis%20of%20%CE%B1-1,3-galactosidic%20linkages%20in%20%CE%BB-carrageenan%20and%20blood%20group%20antigens&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=McGuire,%20Bailey%20E.&rft.date=2020-12-25&rft.volume=295&rft.issue=52&rft.spage=18426&rft.epage=18435&rft.pages=18426-18435&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.015776&rft_dat=%3Cproquest_pubme%3E2456430707%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456430707&rft_id=info:pmid/33127644&rfr_iscdi=true |