Loading…

The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens

α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galac...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2020-12, Vol.295 (52), p.18426-18435
Main Authors: McGuire, Bailey E., Hettle, Andrew G., Vickers, Chelsea, King, Dustin T., Vocadlo, David J., Boraston, Alisdair B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03
cites cdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03
container_end_page 18435
container_issue 52
container_start_page 18426
container_title The Journal of biological chemistry
container_volume 295
creator McGuire, Bailey E.
Hettle, Andrew G.
Vickers, Chelsea
King, Dustin T.
Vocadlo, David J.
Boraston, Alisdair B.
description α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.
doi_str_mv 10.1074/jbc.RA120.015776
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817507097</els_id><sourcerecordid>2456430707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</originalsourceid><addsrcrecordid>eNp1kc2OFCEURonROO3o3pVh6cJqoQqKKhcmk4l_ySQmZkzcEYq6VDPS0ALVST2Oj-Dad5hnkp6emehCNjcXzj0QPoSeU7KmRLDXV4NefzmjNVkTyoVoH6AVJV1TNZx-e4hWhNS06mvenaAnKV2RslhPH6OTpqG1aBlboZ-XG8Apx1nnOQIOBits1Na6BVNK8OQWHZIdAW-WMQanEuBdDPuyk7D1yU6bXGoOOG_umCXZdBBd_6roq6aalFM6HyRWY2f9dzXdzOLr35VWMZYWvPJY-REPLoQRTzHMu9JnO4FPT9Ejo1yCZ7f1FH19_-7y_GN18fnDp_Ozi0o3QuSKUWNAdZwNwA0XgzaKG2O0qrkm_UioaIF2na4paWCgygjTka7n7cAKrEhzit4evbt52MKoweeonNxFu1VxkUFZ-e-Jtxs5hb0UfdMzIYrg5a0ghh8zpCy3NmlwTnkIc5I14y1riCAHlBxRHUNKEcz9NZTIQ7KyJCtvkpXHZMvIi7-fdz9wF2UB3hwBKJ-0txBl0ha8htFG0FmOwf7f_gedFLk1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456430707</pqid></control><display><type>article</type><title>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</title><source>ScienceDirect</source><source>PMC (PubMed Central)</source><creator>McGuire, Bailey E. ; Hettle, Andrew G. ; Vickers, Chelsea ; King, Dustin T. ; Vocadlo, David J. ; Boraston, Alisdair B.</creator><creatorcontrib>McGuire, Bailey E. ; Hettle, Andrew G. ; Vickers, Chelsea ; King, Dustin T. ; Vocadlo, David J. ; Boraston, Alisdair B.</creatorcontrib><description>α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.015776</identifier><identifier>PMID: 33127644</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>blood group antigen ; Blood Group Antigens - chemistry ; Blood Group Antigens - metabolism ; carrageenan ; Carrageenan - chemistry ; Carrageenan - metabolism ; Catalytic Domain ; Crystallography, X-Ray ; enzyme structure ; galactose ; galactosidase ; Galactosides - chemistry ; Galactosides - metabolism ; Glycobiology and Extracellular Matrices ; glycoside hydrolase ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - classification ; Glycoside Hydrolases - metabolism ; Hydrolysis ; Models, Molecular ; Phylogeny ; Protein Conformation ; Pseudoalteromonas ; Pseudoalteromonas - enzymology ; structural biology ; Substrate Specificity ; X-ray crystal structure ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (52), p.18426-18435</ispartof><rights>2020 © 2020 McGuire et al.</rights><rights>2020 McGuire et al.</rights><rights>2020 © 2020 McGuire et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</citedby><cites>FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</cites><orcidid>0000-0001-7147-800X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939477/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925817507097$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33127644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGuire, Bailey E.</creatorcontrib><creatorcontrib>Hettle, Andrew G.</creatorcontrib><creatorcontrib>Vickers, Chelsea</creatorcontrib><creatorcontrib>King, Dustin T.</creatorcontrib><creatorcontrib>Vocadlo, David J.</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><title>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.</description><subject>blood group antigen</subject><subject>Blood Group Antigens - chemistry</subject><subject>Blood Group Antigens - metabolism</subject><subject>carrageenan</subject><subject>Carrageenan - chemistry</subject><subject>Carrageenan - metabolism</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>enzyme structure</subject><subject>galactose</subject><subject>galactosidase</subject><subject>Galactosides - chemistry</subject><subject>Galactosides - metabolism</subject><subject>Glycobiology and Extracellular Matrices</subject><subject>glycoside hydrolase</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - classification</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Phylogeny</subject><subject>Protein Conformation</subject><subject>Pseudoalteromonas</subject><subject>Pseudoalteromonas - enzymology</subject><subject>structural biology</subject><subject>Substrate Specificity</subject><subject>X-ray crystal structure</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc2OFCEURonROO3o3pVh6cJqoQqKKhcmk4l_ySQmZkzcEYq6VDPS0ALVST2Oj-Dad5hnkp6emehCNjcXzj0QPoSeU7KmRLDXV4NefzmjNVkTyoVoH6AVJV1TNZx-e4hWhNS06mvenaAnKV2RslhPH6OTpqG1aBlboZ-XG8Apx1nnOQIOBits1Na6BVNK8OQWHZIdAW-WMQanEuBdDPuyk7D1yU6bXGoOOG_umCXZdBBd_6roq6aalFM6HyRWY2f9dzXdzOLr35VWMZYWvPJY-REPLoQRTzHMu9JnO4FPT9Ejo1yCZ7f1FH19_-7y_GN18fnDp_Ozi0o3QuSKUWNAdZwNwA0XgzaKG2O0qrkm_UioaIF2na4paWCgygjTka7n7cAKrEhzit4evbt52MKoweeonNxFu1VxkUFZ-e-Jtxs5hb0UfdMzIYrg5a0ghh8zpCy3NmlwTnkIc5I14y1riCAHlBxRHUNKEcz9NZTIQ7KyJCtvkpXHZMvIi7-fdz9wF2UB3hwBKJ-0txBl0ha8htFG0FmOwf7f_gedFLk1</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>McGuire, Bailey E.</creator><creator>Hettle, Andrew G.</creator><creator>Vickers, Chelsea</creator><creator>King, Dustin T.</creator><creator>Vocadlo, David J.</creator><creator>Boraston, Alisdair B.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7147-800X</orcidid></search><sort><creationdate>20201225</creationdate><title>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</title><author>McGuire, Bailey E. ; Hettle, Andrew G. ; Vickers, Chelsea ; King, Dustin T. ; Vocadlo, David J. ; Boraston, Alisdair B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>blood group antigen</topic><topic>Blood Group Antigens - chemistry</topic><topic>Blood Group Antigens - metabolism</topic><topic>carrageenan</topic><topic>Carrageenan - chemistry</topic><topic>Carrageenan - metabolism</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>enzyme structure</topic><topic>galactose</topic><topic>galactosidase</topic><topic>Galactosides - chemistry</topic><topic>Galactosides - metabolism</topic><topic>Glycobiology and Extracellular Matrices</topic><topic>glycoside hydrolase</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - classification</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Phylogeny</topic><topic>Protein Conformation</topic><topic>Pseudoalteromonas</topic><topic>Pseudoalteromonas - enzymology</topic><topic>structural biology</topic><topic>Substrate Specificity</topic><topic>X-ray crystal structure</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuire, Bailey E.</creatorcontrib><creatorcontrib>Hettle, Andrew G.</creatorcontrib><creatorcontrib>Vickers, Chelsea</creatorcontrib><creatorcontrib>King, Dustin T.</creatorcontrib><creatorcontrib>Vocadlo, David J.</creatorcontrib><creatorcontrib>Boraston, Alisdair B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGuire, Bailey E.</au><au>Hettle, Andrew G.</au><au>Vickers, Chelsea</au><au>King, Dustin T.</au><au>Vocadlo, David J.</au><au>Boraston, Alisdair B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>295</volume><issue>52</issue><spage>18426</spage><epage>18435</epage><pages>18426-18435</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33127644</pmid><doi>10.1074/jbc.RA120.015776</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7147-800X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-12, Vol.295 (52), p.18426-18435
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939477
source ScienceDirect; PMC (PubMed Central)
subjects blood group antigen
Blood Group Antigens - chemistry
Blood Group Antigens - metabolism
carrageenan
Carrageenan - chemistry
Carrageenan - metabolism
Catalytic Domain
Crystallography, X-Ray
enzyme structure
galactose
galactosidase
Galactosides - chemistry
Galactosides - metabolism
Glycobiology and Extracellular Matrices
glycoside hydrolase
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - classification
Glycoside Hydrolases - metabolism
Hydrolysis
Models, Molecular
Phylogeny
Protein Conformation
Pseudoalteromonas
Pseudoalteromonas - enzymology
structural biology
Substrate Specificity
X-ray crystal structure
X-ray crystallography
title The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20a%20family%20110%20glycoside%20hydrolase%20provides%20insight%20into%20the%20hydrolysis%20of%20%CE%B1-1,3-galactosidic%20linkages%20in%20%CE%BB-carrageenan%20and%20blood%20group%20antigens&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=McGuire,%20Bailey%20E.&rft.date=2020-12-25&rft.volume=295&rft.issue=52&rft.spage=18426&rft.epage=18435&rft.pages=18426-18435&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.015776&rft_dat=%3Cproquest_pubme%3E2456430707%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-41ffea854be5f57bcfa5fffca25c09d0176e188c2103eb1af7f808956b47bca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456430707&rft_id=info:pmid/33127644&rfr_iscdi=true