Loading…

tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets

tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be...

Full description

Saved in:
Bibliographic Details
Published in:Cell proliferation 2021-03, Vol.54 (3), p.e12977-n/a
Main Authors: Zong, Tingyu, Yang, Yanyan, Zhao, Hui, Li, Lin, Liu, Meixin, Fu, Xiuxiu, Tang, Guozhang, Zhou, Hong, Aung, Lynn Htet Htet, Li, Peifeng, Wang, Jianxun, Wang, Zhibin, Yu, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be segmented into two main types, tRNA‐derived stress‐induced RNAs (tiRNAs) and tRNA‐derived fragments (tRFs). Many studies have shown that tsRNAs are functional molecules, not the random degradative products of tRNAs. Notably, due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cell function, such as cell proliferation, migration, cycle and apoptosis, as well as the occurrence and development of a variety of diseases. In addition, tsRNAs may represent a new generation of clinical biomarkers or therapeutic targets because of their stable structures, high conservation and widely distribution, particularly in the peripheral tissues, bodily fluids and exosomes. In this review, we describe the generation, function and mechanism of tsRNAs and illustrate the current research progress of tsRNAs in various diseases, highlight their potentials as biomarkers and therapeutic targets in clinical application. Although our understanding of tsRNAs is still in infancy, the application prospects shown in this field deserve further exploration. tsRNAs are generated under stress condition which are functional molecules. Due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cellular function, including cell proliferation, migration, cell cycle and apoptosis, as well as the occurrence and development of a variety of diseases.
ISSN:0960-7722
1365-2184
DOI:10.1111/cpr.12977