Loading…
DCAF14 promotes stalled fork stability to maintain genome integrity
Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We...
Saved in:
Published in: | Cell reports (Cambridge) 2021-01, Vol.34 (4), p.108669-108669, Article 108669 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13 |
container_end_page | 108669 |
container_issue | 4 |
container_start_page | 108669 |
container_title | Cell reports (Cambridge) |
container_volume | 34 |
creator | Townsend, Arik Lora, Gabriella Engel, Justin Tirado-Class, Neysha Dungrawala, Huzefa |
description | Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance.
[Display omitted]
•DCAF14 is enriched at stalled replication forks•DDB1, CUL4B, and DCAF14 facilitate stalled fork stability•DCAF14 suppresses DNA2- and MRE11-mediated nascent strand degradation•DCAF14 promotes replication fork protection in a RAD51-dependent manner
Townsend et al. find that DDB1- and CUL4-associated factor DCAF14 is recruited to stalled replication forks. DCAF14 prevents replication fork collapse in a CRL4-dependent manner to promote genome stability and cell survival. DCAF14 depletion triggers nascent strand degradation that is reversible by enhancing RAD51 levels at forks. |
doi_str_mv | 10.1016/j.celrep.2020.108669 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720316582</els_id><sourcerecordid>2482664936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13</originalsourceid><addsrcrecordid>eNp9UUtLAzEQDqJYUf-ByB69tGaSbHb3IpT6hIIXPYdsdram7m5qkgr-e1Pqo14MhGRe38x8HyFnQCdAQV4uJwY7j6sJo2zjKqWs9sgRYwBjYKLY3_mPyGkIS5qOpACVOCQjznPKBYcjMrueTW9BZCvvehcxZCHqrsMma51_3Ri17Wz8yKLLem2HmG62wMH1mCULFz4FT8hBq7uAp1_vMXm-vXma3Y_nj3cPs-l8bITkccyg1kxgwerCFGUpqMyhZshKzXTRNnWar81NyURTFQI4GBStrnKOGkvgCPyYXG1xV-u6x8bgEL3u1MrbXvsP5bRVfyODfVEL966KSkBe0QRw8QXg3dsaQ1S9DYnITg_o1kExUTIpRcVlShXbVONdCB7bnzZA1UYCtVRbCdRGArWVIJWd7474U_RN-O8OmIh6t-hVMBYHg431aKJqnP2_wyetNZle</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482664936</pqid></control><display><type>article</type><title>DCAF14 promotes stalled fork stability to maintain genome integrity</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Townsend, Arik ; Lora, Gabriella ; Engel, Justin ; Tirado-Class, Neysha ; Dungrawala, Huzefa</creator><creatorcontrib>Townsend, Arik ; Lora, Gabriella ; Engel, Justin ; Tirado-Class, Neysha ; Dungrawala, Huzefa</creatorcontrib><description>Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance.
[Display omitted]
•DCAF14 is enriched at stalled replication forks•DDB1, CUL4B, and DCAF14 facilitate stalled fork stability•DCAF14 suppresses DNA2- and MRE11-mediated nascent strand degradation•DCAF14 promotes replication fork protection in a RAD51-dependent manner
Townsend et al. find that DDB1- and CUL4-associated factor DCAF14 is recruited to stalled replication forks. DCAF14 prevents replication fork collapse in a CRL4-dependent manner to promote genome stability and cell survival. DCAF14 depletion triggers nascent strand degradation that is reversible by enhancing RAD51 levels at forks.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.108669</identifier><identifier>PMID: 33503431</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BRCA2 ; CRL4 ; DCAF14 ; DNA - biosynthesis ; DNA - genetics ; DNA Replication ; DNA2 ; fork protection ; fork reversal ; Genomic Instability ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; MRE11 ; Protein Binding ; RAD51 ; Replication Origin ; replication stress</subject><ispartof>Cell reports (Cambridge), 2021-01, Vol.34 (4), p.108669-108669, Article 108669</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13</citedby><cites>FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13</cites><orcidid>0000-0002-2016-3494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33503431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Townsend, Arik</creatorcontrib><creatorcontrib>Lora, Gabriella</creatorcontrib><creatorcontrib>Engel, Justin</creatorcontrib><creatorcontrib>Tirado-Class, Neysha</creatorcontrib><creatorcontrib>Dungrawala, Huzefa</creatorcontrib><title>DCAF14 promotes stalled fork stability to maintain genome integrity</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance.
[Display omitted]
•DCAF14 is enriched at stalled replication forks•DDB1, CUL4B, and DCAF14 facilitate stalled fork stability•DCAF14 suppresses DNA2- and MRE11-mediated nascent strand degradation•DCAF14 promotes replication fork protection in a RAD51-dependent manner
Townsend et al. find that DDB1- and CUL4-associated factor DCAF14 is recruited to stalled replication forks. DCAF14 prevents replication fork collapse in a CRL4-dependent manner to promote genome stability and cell survival. DCAF14 depletion triggers nascent strand degradation that is reversible by enhancing RAD51 levels at forks.</description><subject>BRCA2</subject><subject>CRL4</subject><subject>DCAF14</subject><subject>DNA - biosynthesis</subject><subject>DNA - genetics</subject><subject>DNA Replication</subject><subject>DNA2</subject><subject>fork protection</subject><subject>fork reversal</subject><subject>Genomic Instability</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MRE11</subject><subject>Protein Binding</subject><subject>RAD51</subject><subject>Replication Origin</subject><subject>replication stress</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UUtLAzEQDqJYUf-ByB69tGaSbHb3IpT6hIIXPYdsdram7m5qkgr-e1Pqo14MhGRe38x8HyFnQCdAQV4uJwY7j6sJo2zjKqWs9sgRYwBjYKLY3_mPyGkIS5qOpACVOCQjznPKBYcjMrueTW9BZCvvehcxZCHqrsMma51_3Ri17Wz8yKLLem2HmG62wMH1mCULFz4FT8hBq7uAp1_vMXm-vXma3Y_nj3cPs-l8bITkccyg1kxgwerCFGUpqMyhZshKzXTRNnWar81NyURTFQI4GBStrnKOGkvgCPyYXG1xV-u6x8bgEL3u1MrbXvsP5bRVfyODfVEL966KSkBe0QRw8QXg3dsaQ1S9DYnITg_o1kExUTIpRcVlShXbVONdCB7bnzZA1UYCtVRbCdRGArWVIJWd7474U_RN-O8OmIh6t-hVMBYHg431aKJqnP2_wyetNZle</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Townsend, Arik</creator><creator>Lora, Gabriella</creator><creator>Engel, Justin</creator><creator>Tirado-Class, Neysha</creator><creator>Dungrawala, Huzefa</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2016-3494</orcidid></search><sort><creationdate>20210126</creationdate><title>DCAF14 promotes stalled fork stability to maintain genome integrity</title><author>Townsend, Arik ; Lora, Gabriella ; Engel, Justin ; Tirado-Class, Neysha ; Dungrawala, Huzefa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BRCA2</topic><topic>CRL4</topic><topic>DCAF14</topic><topic>DNA - biosynthesis</topic><topic>DNA - genetics</topic><topic>DNA Replication</topic><topic>DNA2</topic><topic>fork protection</topic><topic>fork reversal</topic><topic>Genomic Instability</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MRE11</topic><topic>Protein Binding</topic><topic>RAD51</topic><topic>Replication Origin</topic><topic>replication stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Townsend, Arik</creatorcontrib><creatorcontrib>Lora, Gabriella</creatorcontrib><creatorcontrib>Engel, Justin</creatorcontrib><creatorcontrib>Tirado-Class, Neysha</creatorcontrib><creatorcontrib>Dungrawala, Huzefa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Townsend, Arik</au><au>Lora, Gabriella</au><au>Engel, Justin</au><au>Tirado-Class, Neysha</au><au>Dungrawala, Huzefa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DCAF14 promotes stalled fork stability to maintain genome integrity</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>34</volume><issue>4</issue><spage>108669</spage><epage>108669</epage><pages>108669-108669</pages><artnum>108669</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance.
[Display omitted]
•DCAF14 is enriched at stalled replication forks•DDB1, CUL4B, and DCAF14 facilitate stalled fork stability•DCAF14 suppresses DNA2- and MRE11-mediated nascent strand degradation•DCAF14 promotes replication fork protection in a RAD51-dependent manner
Townsend et al. find that DDB1- and CUL4-associated factor DCAF14 is recruited to stalled replication forks. DCAF14 prevents replication fork collapse in a CRL4-dependent manner to promote genome stability and cell survival. DCAF14 depletion triggers nascent strand degradation that is reversible by enhancing RAD51 levels at forks.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33503431</pmid><doi>10.1016/j.celrep.2020.108669</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2016-3494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2021-01, Vol.34 (4), p.108669-108669, Article 108669 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941590 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | BRCA2 CRL4 DCAF14 DNA - biosynthesis DNA - genetics DNA Replication DNA2 fork protection fork reversal Genomic Instability Humans Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism MRE11 Protein Binding RAD51 Replication Origin replication stress |
title | DCAF14 promotes stalled fork stability to maintain genome integrity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DCAF14%20promotes%20stalled%20fork%20stability%20to%20maintain%20genome%20integrity&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Townsend,%20Arik&rft.date=2021-01-26&rft.volume=34&rft.issue=4&rft.spage=108669&rft.epage=108669&rft.pages=108669-108669&rft.artnum=108669&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.108669&rft_dat=%3Cproquest_pubme%3E2482664936%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-21ba24e72b7c78840651b2e28a2a7fdb006f5c824d974131ce4fa953eae813e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2482664936&rft_id=info:pmid/33503431&rfr_iscdi=true |