Loading…
Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot
The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetra...
Saved in:
Published in: | Journal of molecular medicine (Berlin, Germany) Germany), 2019-12, Vol.97 (12), p.1711-1722 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043 |
container_end_page | 1722 |
container_issue | 12 |
container_start_page | 1711 |
container_title | Journal of molecular medicine (Berlin, Germany) |
container_volume | 97 |
creator | Zhao, Yan Kang, Xuedong Gao, Fuying Guzman, Alejandra Lau, Ryan P. Biniwale, Reshma Wadehra, Madhuri Reemtsen, Brian Garg, Meena Halnon, Nancy Quintero-Rivera, Fabiola Van Arsdell, Glen Coppola, Giovanni Nelson, Stanley F. Touma, Marlin |
description | The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis.
Key messages
Genetic and environmental factors contribute to congenital heart defects (CHDs).
How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear.
Systems biology-based analysis revealed distinct molecular signature in CHDs.
Gene expression modules specifically associated with cyanotic TOF were uncovered.
Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled. |
doi_str_mv | 10.1007/s00109-019-01857-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7942233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328246151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMozjj6B1xIwXU0rzbtRpBBR0Fwoxs3IU3TToZOMybpQP-9mYejblyE5HK_e-4JB4BLjG4wQvzWI4RRARHenDzlcDgCY8wogZgxdAzGqGAZJBxnI3Dm_SLiPC3YKRhRnFPGWDoGHzPdaai7tXG2W-ouJE43fSuDdUOijFO9CT6xdeJMMw_JOhLOqAi4ZCXD3La2GRLTJUEHJ7dFZGvZtjacg5P48Ppif0_A--PD2_QJvrzOnqf3L1AxzgIsUVVVXJKS0BzJWvL4FZWWVMtSoUqnOaY8T4uirkpZc56qLFdY1xnjiNUFYnQC7na6q75c6kptLMpWrJxZSjcIK4342-nMXDR2LXjBCKE0ClzvBZz97LUPYmF710XPglCSE5bhFEeK7CjlrPdO14cNGIlNHmKXh4h5iG0eYohDV7-9HUa-A4gA3QE-trpGu5_d_8h-AY3xmfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328246151</pqid></control><display><type>article</type><title>Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhao, Yan ; Kang, Xuedong ; Gao, Fuying ; Guzman, Alejandra ; Lau, Ryan P. ; Biniwale, Reshma ; Wadehra, Madhuri ; Reemtsen, Brian ; Garg, Meena ; Halnon, Nancy ; Quintero-Rivera, Fabiola ; Van Arsdell, Glen ; Coppola, Giovanni ; Nelson, Stanley F. ; Touma, Marlin</creator><creatorcontrib>Zhao, Yan ; Kang, Xuedong ; Gao, Fuying ; Guzman, Alejandra ; Lau, Ryan P. ; Biniwale, Reshma ; Wadehra, Madhuri ; Reemtsen, Brian ; Garg, Meena ; Halnon, Nancy ; Quintero-Rivera, Fabiola ; Van Arsdell, Glen ; Coppola, Giovanni ; Nelson, Stanley F. ; Touma, Marlin ; UCLA Congenital Heart Defects BioCore Faculty ; the UCLA Congenital Heart Defects BioCore Faculty</creatorcontrib><description>The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis.
Key messages
Genetic and environmental factors contribute to congenital heart defects (CHDs).
How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear.
Systems biology-based analysis revealed distinct molecular signature in CHDs.
Gene expression modules specifically associated with cyanotic TOF were uncovered.
Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-019-01857-y</identifier><identifier>PMID: 31834445</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Cardiomyocytes ; Cardiovascular disease ; Cell cycle ; Child ; Child, Preschool ; Cohort Studies ; Congenital diseases ; Cyclic AMP Response Element-Binding Protein - metabolism ; E2F1 Transcription Factor - metabolism ; Environmental factors ; Epithelial-Mesenchymal Transition - genetics ; Factor analysis ; Female ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation - genetics ; Gene Regulatory Networks - genetics ; Genome ; Heart ; Heart Ventricles - metabolism ; Heart Ventricles - pathology ; Human Genetics ; Humans ; Hypoxemia ; Hypoxia ; Hypoxia - metabolism ; Infant ; Internal Medicine ; Male ; Molecular Medicine ; Original Article ; Outflow ; Pathogenesis ; Signal Transduction - genetics ; Tetralogy of Fallot ; Tetralogy of Fallot - genetics ; Tetralogy of Fallot - metabolism ; Transcriptome - genetics ; Transcriptome - physiology ; Ventricle ; Wnt Proteins - metabolism</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2019-12, Vol.97 (12), p.1711-1722</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Journal of Molecular Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043</citedby><cites>FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043</cites><orcidid>0000-0002-2827-4068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31834445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Kang, Xuedong</creatorcontrib><creatorcontrib>Gao, Fuying</creatorcontrib><creatorcontrib>Guzman, Alejandra</creatorcontrib><creatorcontrib>Lau, Ryan P.</creatorcontrib><creatorcontrib>Biniwale, Reshma</creatorcontrib><creatorcontrib>Wadehra, Madhuri</creatorcontrib><creatorcontrib>Reemtsen, Brian</creatorcontrib><creatorcontrib>Garg, Meena</creatorcontrib><creatorcontrib>Halnon, Nancy</creatorcontrib><creatorcontrib>Quintero-Rivera, Fabiola</creatorcontrib><creatorcontrib>Van Arsdell, Glen</creatorcontrib><creatorcontrib>Coppola, Giovanni</creatorcontrib><creatorcontrib>Nelson, Stanley F.</creatorcontrib><creatorcontrib>Touma, Marlin</creatorcontrib><creatorcontrib>UCLA Congenital Heart Defects BioCore Faculty</creatorcontrib><creatorcontrib>the UCLA Congenital Heart Defects BioCore Faculty</creatorcontrib><title>Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis.
Key messages
Genetic and environmental factors contribute to congenital heart defects (CHDs).
How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear.
Systems biology-based analysis revealed distinct molecular signature in CHDs.
Gene expression modules specifically associated with cyanotic TOF were uncovered.
Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular disease</subject><subject>Cell cycle</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cohort Studies</subject><subject>Congenital diseases</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>E2F1 Transcription Factor - metabolism</subject><subject>Environmental factors</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>Factor analysis</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genome</subject><subject>Heart</subject><subject>Heart Ventricles - metabolism</subject><subject>Heart Ventricles - pathology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Hypoxemia</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Infant</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Molecular Medicine</subject><subject>Original Article</subject><subject>Outflow</subject><subject>Pathogenesis</subject><subject>Signal Transduction - genetics</subject><subject>Tetralogy of Fallot</subject><subject>Tetralogy of Fallot - genetics</subject><subject>Tetralogy of Fallot - metabolism</subject><subject>Transcriptome - genetics</subject><subject>Transcriptome - physiology</subject><subject>Ventricle</subject><subject>Wnt Proteins - metabolism</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMozjj6B1xIwXU0rzbtRpBBR0Fwoxs3IU3TToZOMybpQP-9mYejblyE5HK_e-4JB4BLjG4wQvzWI4RRARHenDzlcDgCY8wogZgxdAzGqGAZJBxnI3Dm_SLiPC3YKRhRnFPGWDoGHzPdaai7tXG2W-ouJE43fSuDdUOijFO9CT6xdeJMMw_JOhLOqAi4ZCXD3La2GRLTJUEHJ7dFZGvZtjacg5P48Ppif0_A--PD2_QJvrzOnqf3L1AxzgIsUVVVXJKS0BzJWvL4FZWWVMtSoUqnOaY8T4uirkpZc56qLFdY1xnjiNUFYnQC7na6q75c6kptLMpWrJxZSjcIK4342-nMXDR2LXjBCKE0ClzvBZz97LUPYmF710XPglCSE5bhFEeK7CjlrPdO14cNGIlNHmKXh4h5iG0eYohDV7-9HUa-A4gA3QE-trpGu5_d_8h-AY3xmfw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zhao, Yan</creator><creator>Kang, Xuedong</creator><creator>Gao, Fuying</creator><creator>Guzman, Alejandra</creator><creator>Lau, Ryan P.</creator><creator>Biniwale, Reshma</creator><creator>Wadehra, Madhuri</creator><creator>Reemtsen, Brian</creator><creator>Garg, Meena</creator><creator>Halnon, Nancy</creator><creator>Quintero-Rivera, Fabiola</creator><creator>Van Arsdell, Glen</creator><creator>Coppola, Giovanni</creator><creator>Nelson, Stanley F.</creator><creator>Touma, Marlin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2827-4068</orcidid></search><sort><creationdate>20191201</creationdate><title>Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot</title><author>Zhao, Yan ; Kang, Xuedong ; Gao, Fuying ; Guzman, Alejandra ; Lau, Ryan P. ; Biniwale, Reshma ; Wadehra, Madhuri ; Reemtsen, Brian ; Garg, Meena ; Halnon, Nancy ; Quintero-Rivera, Fabiola ; Van Arsdell, Glen ; Coppola, Giovanni ; Nelson, Stanley F. ; Touma, Marlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular disease</topic><topic>Cell cycle</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cohort Studies</topic><topic>Congenital diseases</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>E2F1 Transcription Factor - metabolism</topic><topic>Environmental factors</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>Factor analysis</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genome</topic><topic>Heart</topic><topic>Heart Ventricles - metabolism</topic><topic>Heart Ventricles - pathology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Hypoxemia</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Infant</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Molecular Medicine</topic><topic>Original Article</topic><topic>Outflow</topic><topic>Pathogenesis</topic><topic>Signal Transduction - genetics</topic><topic>Tetralogy of Fallot</topic><topic>Tetralogy of Fallot - genetics</topic><topic>Tetralogy of Fallot - metabolism</topic><topic>Transcriptome - genetics</topic><topic>Transcriptome - physiology</topic><topic>Ventricle</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Kang, Xuedong</creatorcontrib><creatorcontrib>Gao, Fuying</creatorcontrib><creatorcontrib>Guzman, Alejandra</creatorcontrib><creatorcontrib>Lau, Ryan P.</creatorcontrib><creatorcontrib>Biniwale, Reshma</creatorcontrib><creatorcontrib>Wadehra, Madhuri</creatorcontrib><creatorcontrib>Reemtsen, Brian</creatorcontrib><creatorcontrib>Garg, Meena</creatorcontrib><creatorcontrib>Halnon, Nancy</creatorcontrib><creatorcontrib>Quintero-Rivera, Fabiola</creatorcontrib><creatorcontrib>Van Arsdell, Glen</creatorcontrib><creatorcontrib>Coppola, Giovanni</creatorcontrib><creatorcontrib>Nelson, Stanley F.</creatorcontrib><creatorcontrib>Touma, Marlin</creatorcontrib><creatorcontrib>UCLA Congenital Heart Defects BioCore Faculty</creatorcontrib><creatorcontrib>the UCLA Congenital Heart Defects BioCore Faculty</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yan</au><au>Kang, Xuedong</au><au>Gao, Fuying</au><au>Guzman, Alejandra</au><au>Lau, Ryan P.</au><au>Biniwale, Reshma</au><au>Wadehra, Madhuri</au><au>Reemtsen, Brian</au><au>Garg, Meena</au><au>Halnon, Nancy</au><au>Quintero-Rivera, Fabiola</au><au>Van Arsdell, Glen</au><au>Coppola, Giovanni</au><au>Nelson, Stanley F.</au><au>Touma, Marlin</au><aucorp>UCLA Congenital Heart Defects BioCore Faculty</aucorp><aucorp>the UCLA Congenital Heart Defects BioCore Faculty</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>97</volume><issue>12</issue><spage>1711</spage><epage>1722</epage><pages>1711-1722</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis.
Key messages
Genetic and environmental factors contribute to congenital heart defects (CHDs).
How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear.
Systems biology-based analysis revealed distinct molecular signature in CHDs.
Gene expression modules specifically associated with cyanotic TOF were uncovered.
Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31834445</pmid><doi>10.1007/s00109-019-01857-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2827-4068</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2716 |
ispartof | Journal of molecular medicine (Berlin, Germany), 2019-12, Vol.97 (12), p.1711-1722 |
issn | 0946-2716 1432-1440 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7942233 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Biomedical and Life Sciences Biomedicine Cardiomyocytes Cardiovascular disease Cell cycle Child Child, Preschool Cohort Studies Congenital diseases Cyclic AMP Response Element-Binding Protein - metabolism E2F1 Transcription Factor - metabolism Environmental factors Epithelial-Mesenchymal Transition - genetics Factor analysis Female Gene expression Gene Expression Profiling Gene Expression Regulation - genetics Gene Regulatory Networks - genetics Genome Heart Heart Ventricles - metabolism Heart Ventricles - pathology Human Genetics Humans Hypoxemia Hypoxia Hypoxia - metabolism Infant Internal Medicine Male Molecular Medicine Original Article Outflow Pathogenesis Signal Transduction - genetics Tetralogy of Fallot Tetralogy of Fallot - genetics Tetralogy of Fallot - metabolism Transcriptome - genetics Transcriptome - physiology Ventricle Wnt Proteins - metabolism |
title | Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-environment%20regulatory%20circuits%20of%20right%20ventricular%20pathology%20in%20tetralogy%20of%20fallot&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Zhao,%20Yan&rft.aucorp=UCLA%20Congenital%20Heart%20Defects%20BioCore%20Faculty&rft.date=2019-12-01&rft.volume=97&rft.issue=12&rft.spage=1711&rft.epage=1722&rft.pages=1711-1722&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-019-01857-y&rft_dat=%3Cproquest_pubme%3E2328246151%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b0ddd7a2b2380afa7185c5b3eabc0de581378599fdbaf775c68c1ef64704f9043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328246151&rft_id=info:pmid/31834445&rfr_iscdi=true |