Loading…
The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation
The pathogenesis of hypertrophic scar (HS) is still poorly understood. Macrophages, especially the polarisation of that to M1 or M2, play a pivotal role in control of the degree of scar formation. Profiling of macrophage phenotypes in human specimens during long‐term period of wound healing and HS f...
Saved in:
Published in: | International wound journal 2019-04, Vol.16 (2), p.360-369 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pathogenesis of hypertrophic scar (HS) is still poorly understood. Macrophages, especially the polarisation of that to M1 or M2, play a pivotal role in control of the degree of scar formation. Profiling of macrophage phenotypes in human specimens during long‐term period of wound healing and HS formation may provide valuable clinical evidence for understanding the pathology of human scars. Human wound and HS specimens were collected, the macrophage phenotype was identified by immunofluorescence, and biomarkers and cytokines associated with M1 and M2 macrophages were detected by RT‐PCR. The correlation between the macrophage phenotype and HS characteristics was analysed by linear regression analyses. We found excessive and persistent infiltration by M1 macrophages around the blood vessels in the superficial layer of the dermis at early wound tissues, whereas M2 macrophages predominated in later wound tissues and the proliferative phase of HS and were scattered throughout the dermis. The density of M1 macrophages was positively correlated with mRNA expression levels of tumour necrosis factor‐alpha (TNF‐α) and IL‐6. The density of M2 macrophages was positively correlated with ARG1 and negatively correlated with the duration of HS. The sequential infiltration by M1 macrophage and M2 macrophages in human wound and HS tissues was confirmed. |
---|---|
ISSN: | 1742-4801 1742-481X 1742-481X |
DOI: | 10.1111/iwj.13041 |