Loading…

Migration and accumulation of bacteria with chemotaxis and chemokinesis

Bacteria can chemotactically migrate up attractant gradients by controlling run-and-tumble motility patterns. In addition to this well-known chemotactic behaviour, several soil and marine bacterial species perform chemokinesis; they adjust their swimming speed according to the local concentration of...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2021, Vol.44 (3), p.32, Article 32
Main Authors: Jakuszeit, Theresa, Lindsey-Jones, James, Peaudecerf, François J., Croze, Ottavio A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacteria can chemotactically migrate up attractant gradients by controlling run-and-tumble motility patterns. In addition to this well-known chemotactic behaviour, several soil and marine bacterial species perform chemokinesis; they adjust their swimming speed according to the local concentration of chemoeffector, with higher speed at higher concentration. A field of attractant then induces a spatially varying swimming speed, which results in a drift towards lower attractant concentrations—contrary to the drift created by chemotaxis. Here, to explore the biological benefits of chemokinesis and investigate its impact on the chemotactic response, we extend a Keller–Segel-type model to include chemokinesis. We apply the model to predict the dynamics of bacterial populations capable of chemokinesis and chemotaxis in chemoeffector fields inspired by microfluidic and agar plate migration assays. We find that chemokinesis combined with chemotaxis not only may enhance the population response with respect to pure chemotaxis, but also modifies it qualitatively. We conclude presenting predictions for bacteria around dynamic finite-size nutrient sources, simulating, e.g. a marine particle or a root. We show that chemokinesis can reduce the measuring bias that is created by a decaying attractant gradient. Graphic abstract
ISSN:1292-8941
1292-895X
1292-895X
DOI:10.1140/epje/s10189-021-00009-w