Loading…
Dynamic association of human Ebp1 with the ribosome
Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3...
Saved in:
Published in: | RNA (Cambridge) 2021-04, Vol.27 (4), p.411-419 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393 |
container_end_page | 419 |
container_issue | 4 |
container_start_page | 411 |
container_title | RNA (Cambridge) |
container_volume | 27 |
creator | Bhaskar, Varun Desogus, Jessica Graff-Meyer, Alexandra Schenk, Andreas D Cavadini, Simone Chao, Jeffrey A |
description | Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3 Å resolution. Ebp1 binds in the vicinity of the peptide exit tunnel on the 80S ribosome, and this binding is enhanced upon puromycin-mediated translational inhibition. The association of Ebp1 with the 80S ribosome centers around its interaction with ribosomal proteins eL19 and uL23 and the 28S rRNA. Further analysis of the Ebp1-ribosome complex suggests that Ebp1 can rotate around its insert domain, which may enable it to assume a wide range of conformations while maintaining its interaction with the ribosome. Structurally, Ebp1 shares homology with the methionine aminopeptidase 2 family of enzymes; therefore, this inherent flexibility may also be conserved. |
doi_str_mv | 10.1261/rna.077602.120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7962488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526333884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393</originalsourceid><addsrcrecordid>eNpVUM1LwzAUD6K4Ob16lILnziQvbZOLIHN-wMCLnkOSJi5jbWbTKvvvjWwOPb2P38d7_BC6JHhKaEluulZNcVWVmKYZH6ExYaXIBcbkOPVQFDkHTkfoLMZVWkKCT9EIgFWCkGqM4H7bqsabTMUYjFe9D20WXLYcGtVmc70h2Zfvl1m_tFnndYihsefoxKl1tBf7OkFvD_PX2VO-eHl8nt0tcsMI73MleOWcrqzTprZWM0IdM4QWwtSi0KYsmQUuiFXYMgw1rxVwA4VymmMGAibodue7GXRja2PbvlNruel8o7qtDMrL_0jrl_I9fMpKlJRxngyu9wZd-Bhs7OUqDCmxdZS0oCUAcM4Sa7pjmS7E2Fl3uECw_AlZJonchZxmnARXf_860H9ThW843Xir</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526333884</pqid></control><display><type>article</type><title>Dynamic association of human Ebp1 with the ribosome</title><source>Open Access: PubMed Central</source><creator>Bhaskar, Varun ; Desogus, Jessica ; Graff-Meyer, Alexandra ; Schenk, Andreas D ; Cavadini, Simone ; Chao, Jeffrey A</creator><creatorcontrib>Bhaskar, Varun ; Desogus, Jessica ; Graff-Meyer, Alexandra ; Schenk, Andreas D ; Cavadini, Simone ; Chao, Jeffrey A</creatorcontrib><description>Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3 Å resolution. Ebp1 binds in the vicinity of the peptide exit tunnel on the 80S ribosome, and this binding is enhanced upon puromycin-mediated translational inhibition. The association of Ebp1 with the 80S ribosome centers around its interaction with ribosomal proteins eL19 and uL23 and the 28S rRNA. Further analysis of the Ebp1-ribosome complex suggests that Ebp1 can rotate around its insert domain, which may enable it to assume a wide range of conformations while maintaining its interaction with the ribosome. Structurally, Ebp1 shares homology with the methionine aminopeptidase 2 family of enzymes; therefore, this inherent flexibility may also be conserved.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.077602.120</identifier><identifier>PMID: 33479117</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Aminopeptidase ; Binding Sites ; Cryoelectron Microscopy ; EBP1 protein ; Homology ; Humans ; Macromolecules ; Methionine ; Models, Molecular ; Protein Binding ; Protein biosynthesis ; Protein Biosynthesis - drug effects ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protein Synthesis Inhibitors - pharmacology ; Puromycin ; Puromycin - pharmacology ; Ribosomal proteins ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Ribosomes ; Ribosomes - chemistry ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; rRNA 28S ; Thermodynamics</subject><ispartof>RNA (Cambridge), 2021-04, Vol.27 (4), p.411-419</ispartof><rights>2021 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Apr 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393</citedby><cites>FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393</cites><orcidid>0000-0001-9214-2505 ; 0000-0002-5895-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962488/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962488/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33479117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhaskar, Varun</creatorcontrib><creatorcontrib>Desogus, Jessica</creatorcontrib><creatorcontrib>Graff-Meyer, Alexandra</creatorcontrib><creatorcontrib>Schenk, Andreas D</creatorcontrib><creatorcontrib>Cavadini, Simone</creatorcontrib><creatorcontrib>Chao, Jeffrey A</creatorcontrib><title>Dynamic association of human Ebp1 with the ribosome</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3 Å resolution. Ebp1 binds in the vicinity of the peptide exit tunnel on the 80S ribosome, and this binding is enhanced upon puromycin-mediated translational inhibition. The association of Ebp1 with the 80S ribosome centers around its interaction with ribosomal proteins eL19 and uL23 and the 28S rRNA. Further analysis of the Ebp1-ribosome complex suggests that Ebp1 can rotate around its insert domain, which may enable it to assume a wide range of conformations while maintaining its interaction with the ribosome. Structurally, Ebp1 shares homology with the methionine aminopeptidase 2 family of enzymes; therefore, this inherent flexibility may also be conserved.</description><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Aminopeptidase</subject><subject>Binding Sites</subject><subject>Cryoelectron Microscopy</subject><subject>EBP1 protein</subject><subject>Homology</subject><subject>Humans</subject><subject>Macromolecules</subject><subject>Methionine</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Puromycin</subject><subject>Puromycin - pharmacology</subject><subject>Ribosomal proteins</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Ribosomes</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>rRNA 28S</subject><subject>Thermodynamics</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUM1LwzAUD6K4Ob16lILnziQvbZOLIHN-wMCLnkOSJi5jbWbTKvvvjWwOPb2P38d7_BC6JHhKaEluulZNcVWVmKYZH6ExYaXIBcbkOPVQFDkHTkfoLMZVWkKCT9EIgFWCkGqM4H7bqsabTMUYjFe9D20WXLYcGtVmc70h2Zfvl1m_tFnndYihsefoxKl1tBf7OkFvD_PX2VO-eHl8nt0tcsMI73MleOWcrqzTprZWM0IdM4QWwtSi0KYsmQUuiFXYMgw1rxVwA4VymmMGAibodue7GXRja2PbvlNruel8o7qtDMrL_0jrl_I9fMpKlJRxngyu9wZd-Bhs7OUqDCmxdZS0oCUAcM4Sa7pjmS7E2Fl3uECw_AlZJonchZxmnARXf_860H9ThW843Xir</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Bhaskar, Varun</creator><creator>Desogus, Jessica</creator><creator>Graff-Meyer, Alexandra</creator><creator>Schenk, Andreas D</creator><creator>Cavadini, Simone</creator><creator>Chao, Jeffrey A</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9214-2505</orcidid><orcidid>https://orcid.org/0000-0002-5895-9156</orcidid></search><sort><creationdate>202104</creationdate><title>Dynamic association of human Ebp1 with the ribosome</title><author>Bhaskar, Varun ; Desogus, Jessica ; Graff-Meyer, Alexandra ; Schenk, Andreas D ; Cavadini, Simone ; Chao, Jeffrey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Aminopeptidase</topic><topic>Binding Sites</topic><topic>Cryoelectron Microscopy</topic><topic>EBP1 protein</topic><topic>Homology</topic><topic>Humans</topic><topic>Macromolecules</topic><topic>Methionine</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Puromycin</topic><topic>Puromycin - pharmacology</topic><topic>Ribosomal proteins</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Ribosomes</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>rRNA 28S</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhaskar, Varun</creatorcontrib><creatorcontrib>Desogus, Jessica</creatorcontrib><creatorcontrib>Graff-Meyer, Alexandra</creatorcontrib><creatorcontrib>Schenk, Andreas D</creatorcontrib><creatorcontrib>Cavadini, Simone</creatorcontrib><creatorcontrib>Chao, Jeffrey A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaskar, Varun</au><au>Desogus, Jessica</au><au>Graff-Meyer, Alexandra</au><au>Schenk, Andreas D</au><au>Cavadini, Simone</au><au>Chao, Jeffrey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic association of human Ebp1 with the ribosome</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2021-04</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>411</spage><epage>419</epage><pages>411-419</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3 Å resolution. Ebp1 binds in the vicinity of the peptide exit tunnel on the 80S ribosome, and this binding is enhanced upon puromycin-mediated translational inhibition. The association of Ebp1 with the 80S ribosome centers around its interaction with ribosomal proteins eL19 and uL23 and the 28S rRNA. Further analysis of the Ebp1-ribosome complex suggests that Ebp1 can rotate around its insert domain, which may enable it to assume a wide range of conformations while maintaining its interaction with the ribosome. Structurally, Ebp1 shares homology with the methionine aminopeptidase 2 family of enzymes; therefore, this inherent flexibility may also be conserved.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>33479117</pmid><doi>10.1261/rna.077602.120</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9214-2505</orcidid><orcidid>https://orcid.org/0000-0002-5895-9156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-8382 |
ispartof | RNA (Cambridge), 2021-04, Vol.27 (4), p.411-419 |
issn | 1355-8382 1469-9001 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7962488 |
source | Open Access: PubMed Central |
subjects | Adaptor Proteins, Signal Transducing - chemistry Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Aminopeptidase Binding Sites Cryoelectron Microscopy EBP1 protein Homology Humans Macromolecules Methionine Models, Molecular Protein Binding Protein biosynthesis Protein Biosynthesis - drug effects Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protein Synthesis Inhibitors - pharmacology Puromycin Puromycin - pharmacology Ribosomal proteins Ribosomal Proteins - chemistry Ribosomal Proteins - genetics Ribosomal Proteins - metabolism Ribosomes Ribosomes - chemistry Ribosomes - genetics Ribosomes - metabolism RNA, Ribosomal - chemistry RNA, Ribosomal - genetics RNA, Ribosomal - metabolism RNA-Binding Proteins - chemistry RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism rRNA 28S Thermodynamics |
title | Dynamic association of human Ebp1 with the ribosome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20association%20of%20human%20Ebp1%20with%20the%20ribosome&rft.jtitle=RNA%20(Cambridge)&rft.au=Bhaskar,%20Varun&rft.date=2021-04&rft.volume=27&rft.issue=4&rft.spage=411&rft.epage=419&rft.pages=411-419&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.077602.120&rft_dat=%3Cproquest_pubme%3E2526333884%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-a987ffb7efbcdeeb412f4c1259cd95bc664e3891ea0e403d8da38c35afb804393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2526333884&rft_id=info:pmid/33479117&rfr_iscdi=true |