Loading…
In vivo structure of the Ty1 retrotransposon RNA genome
Abstract Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we pro...
Saved in:
Published in: | Nucleic Acids Research 2021-03, Vol.49 (5), p.2878-2893 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3 |
container_end_page | 2893 |
container_issue | 5 |
container_start_page | 2878 |
container_title | Nucleic Acids Research |
container_volume | 49 |
creator | Andrzejewska, Angelika Zawadzka, Małgorzata Gumna, Julita Garfinkel, David J Pachulska-Wieczorek, Katarzyna |
description | Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context. |
doi_str_mv | 10.1093/nar/gkab090 |
format | article |
fullrecord | <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab090</oup_id><sourcerecordid>2493001709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</originalsourceid><addsrcrecordid>eNp9kd1LwzAUxYMobk6ffJeCIILUJU2aNS_CGH4MREHmc0jTZOtsk5q0g_33ZmwO9UG4cB_uj8O55wBwjuAtggwPjXDD-YfIIYMHoI8wTWLCaHII-hDDNEaQZD1w4v0SQkRQSo5BDwcIYcz6YDQ10apc2ci3rpNt51RkddQuVDRbo8ip1tnWCeMb662J3l7G0VwZW6tTcKRF5dXZbg_A-8P9bPIUP78-Tifj51gSiNtYS5kRyjQqtKYiZcFLhosUFzgXSUaUUDkUGGW5FJgVNCc6yQRiUrIkp7lWeADutrpNl9eqkMoEOxVvXFkLt-ZWlPz3xZQLPrcrPmKUQQSDwPVOwNnPTvmW16WXqqqEUbbzPCEMh2BGIckBuPyDLm3nTHhvQ22GYhqomy0lnfXeKb03gyDfFMJDIXxXSKAvfvrfs98NBOBqC9iu-VfpCyOMlP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492492636</pqid></control><display><type>article</type><title>In vivo structure of the Ty1 retrotransposon RNA genome</title><source>Coronavirus Research Database</source><creator>Andrzejewska, Angelika ; Zawadzka, Małgorzata ; Gumna, Julita ; Garfinkel, David J ; Pachulska-Wieczorek, Katarzyna</creator><creatorcontrib>Andrzejewska, Angelika ; Zawadzka, Małgorzata ; Gumna, Julita ; Garfinkel, David J ; Pachulska-Wieczorek, Katarzyna</creatorcontrib><description>Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab090</identifier><identifier>PMID: 33621339</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Pairing ; Dimerization ; Genome, Viral ; Nucleic Acid Conformation ; Protein Biosynthesis ; Retroelements ; RNA and RNA-protein complexes ; RNA, Transfer, Met - metabolism ; RNA, Viral - chemistry ; RNA, Viral - metabolism ; Saccharomyces - virology ; Terminal Repeat Sequences</subject><ispartof>Nucleic Acids Research, 2021-03, Vol.49 (5), p.2878-2893</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</citedby><cites>FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</cites><orcidid>0000-0002-1045-2823 ; 0000-0002-2667-9926 ; 0000-0001-6234-2426 ; 0000-0002-6128-6343 ; 0000-0002-5723-6204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2492492636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,38516,43895,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2492492636?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33621339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrzejewska, Angelika</creatorcontrib><creatorcontrib>Zawadzka, Małgorzata</creatorcontrib><creatorcontrib>Gumna, Julita</creatorcontrib><creatorcontrib>Garfinkel, David J</creatorcontrib><creatorcontrib>Pachulska-Wieczorek, Katarzyna</creatorcontrib><title>In vivo structure of the Ty1 retrotransposon RNA genome</title><title>Nucleic Acids Research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.</description><subject>Base Pairing</subject><subject>Dimerization</subject><subject>Genome, Viral</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Biosynthesis</subject><subject>Retroelements</subject><subject>RNA and RNA-protein complexes</subject><subject>RNA, Transfer, Met - metabolism</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - metabolism</subject><subject>Saccharomyces - virology</subject><subject>Terminal Repeat Sequences</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>COVID</sourceid><recordid>eNp9kd1LwzAUxYMobk6ffJeCIILUJU2aNS_CGH4MREHmc0jTZOtsk5q0g_33ZmwO9UG4cB_uj8O55wBwjuAtggwPjXDD-YfIIYMHoI8wTWLCaHII-hDDNEaQZD1w4v0SQkRQSo5BDwcIYcz6YDQ10apc2ci3rpNt51RkddQuVDRbo8ip1tnWCeMb662J3l7G0VwZW6tTcKRF5dXZbg_A-8P9bPIUP78-Tifj51gSiNtYS5kRyjQqtKYiZcFLhosUFzgXSUaUUDkUGGW5FJgVNCc6yQRiUrIkp7lWeADutrpNl9eqkMoEOxVvXFkLt-ZWlPz3xZQLPrcrPmKUQQSDwPVOwNnPTvmW16WXqqqEUbbzPCEMh2BGIckBuPyDLm3nTHhvQ22GYhqomy0lnfXeKb03gyDfFMJDIXxXSKAvfvrfs98NBOBqC9iu-VfpCyOMlP0</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Andrzejewska, Angelika</creator><creator>Zawadzka, Małgorzata</creator><creator>Gumna, Julita</creator><creator>Garfinkel, David J</creator><creator>Pachulska-Wieczorek, Katarzyna</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1045-2823</orcidid><orcidid>https://orcid.org/0000-0002-2667-9926</orcidid><orcidid>https://orcid.org/0000-0001-6234-2426</orcidid><orcidid>https://orcid.org/0000-0002-6128-6343</orcidid><orcidid>https://orcid.org/0000-0002-5723-6204</orcidid></search><sort><creationdate>20210318</creationdate><title>In vivo structure of the Ty1 retrotransposon RNA genome</title><author>Andrzejewska, Angelika ; Zawadzka, Małgorzata ; Gumna, Julita ; Garfinkel, David J ; Pachulska-Wieczorek, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base Pairing</topic><topic>Dimerization</topic><topic>Genome, Viral</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Biosynthesis</topic><topic>Retroelements</topic><topic>RNA and RNA-protein complexes</topic><topic>RNA, Transfer, Met - metabolism</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - metabolism</topic><topic>Saccharomyces - virology</topic><topic>Terminal Repeat Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrzejewska, Angelika</creatorcontrib><creatorcontrib>Zawadzka, Małgorzata</creatorcontrib><creatorcontrib>Gumna, Julita</creatorcontrib><creatorcontrib>Garfinkel, David J</creatorcontrib><creatorcontrib>Pachulska-Wieczorek, Katarzyna</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic Acids Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrzejewska, Angelika</au><au>Zawadzka, Małgorzata</au><au>Gumna, Julita</au><au>Garfinkel, David J</au><au>Pachulska-Wieczorek, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo structure of the Ty1 retrotransposon RNA genome</atitle><jtitle>Nucleic Acids Research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>49</volume><issue>5</issue><spage>2878</spage><epage>2893</epage><pages>2878-2893</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33621339</pmid><doi>10.1093/nar/gkab090</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1045-2823</orcidid><orcidid>https://orcid.org/0000-0002-2667-9926</orcidid><orcidid>https://orcid.org/0000-0001-6234-2426</orcidid><orcidid>https://orcid.org/0000-0002-6128-6343</orcidid><orcidid>https://orcid.org/0000-0002-5723-6204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic Acids Research, 2021-03, Vol.49 (5), p.2878-2893 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969010 |
source | Coronavirus Research Database |
subjects | Base Pairing Dimerization Genome, Viral Nucleic Acid Conformation Protein Biosynthesis Retroelements RNA and RNA-protein complexes RNA, Transfer, Met - metabolism RNA, Viral - chemistry RNA, Viral - metabolism Saccharomyces - virology Terminal Repeat Sequences |
title | In vivo structure of the Ty1 retrotransposon RNA genome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20structure%20of%20the%20Ty1%20retrotransposon%20RNA%20genome&rft.jtitle=Nucleic%20Acids%20Research&rft.au=Andrzejewska,%20Angelika&rft.date=2021-03-18&rft.volume=49&rft.issue=5&rft.spage=2878&rft.epage=2893&rft.pages=2878-2893&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab090&rft_dat=%3Cproquest_COVID%3E2493001709%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492492636&rft_id=info:pmid/33621339&rft_oup_id=10.1093/nar/gkab090&rfr_iscdi=true |