Loading…

In vivo structure of the Ty1 retrotransposon RNA genome

Abstract Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we pro...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic Acids Research 2021-03, Vol.49 (5), p.2878-2893
Main Authors: Andrzejewska, Angelika, Zawadzka, Małgorzata, Gumna, Julita, Garfinkel, David J, Pachulska-Wieczorek, Katarzyna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3
cites cdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3
container_end_page 2893
container_issue 5
container_start_page 2878
container_title Nucleic Acids Research
container_volume 49
creator Andrzejewska, Angelika
Zawadzka, Małgorzata
Gumna, Julita
Garfinkel, David J
Pachulska-Wieczorek, Katarzyna
description Abstract Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
doi_str_mv 10.1093/nar/gkab090
format article
fullrecord <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab090</oup_id><sourcerecordid>2493001709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</originalsourceid><addsrcrecordid>eNp9kd1LwzAUxYMobk6ffJeCIILUJU2aNS_CGH4MREHmc0jTZOtsk5q0g_33ZmwO9UG4cB_uj8O55wBwjuAtggwPjXDD-YfIIYMHoI8wTWLCaHII-hDDNEaQZD1w4v0SQkRQSo5BDwcIYcz6YDQ10apc2ci3rpNt51RkddQuVDRbo8ip1tnWCeMb662J3l7G0VwZW6tTcKRF5dXZbg_A-8P9bPIUP78-Tifj51gSiNtYS5kRyjQqtKYiZcFLhosUFzgXSUaUUDkUGGW5FJgVNCc6yQRiUrIkp7lWeADutrpNl9eqkMoEOxVvXFkLt-ZWlPz3xZQLPrcrPmKUQQSDwPVOwNnPTvmW16WXqqqEUbbzPCEMh2BGIckBuPyDLm3nTHhvQ22GYhqomy0lnfXeKb03gyDfFMJDIXxXSKAvfvrfs98NBOBqC9iu-VfpCyOMlP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492492636</pqid></control><display><type>article</type><title>In vivo structure of the Ty1 retrotransposon RNA genome</title><source>Coronavirus Research Database</source><creator>Andrzejewska, Angelika ; Zawadzka, Małgorzata ; Gumna, Julita ; Garfinkel, David J ; Pachulska-Wieczorek, Katarzyna</creator><creatorcontrib>Andrzejewska, Angelika ; Zawadzka, Małgorzata ; Gumna, Julita ; Garfinkel, David J ; Pachulska-Wieczorek, Katarzyna</creatorcontrib><description>Abstract Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab090</identifier><identifier>PMID: 33621339</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Pairing ; Dimerization ; Genome, Viral ; Nucleic Acid Conformation ; Protein Biosynthesis ; Retroelements ; RNA and RNA-protein complexes ; RNA, Transfer, Met - metabolism ; RNA, Viral - chemistry ; RNA, Viral - metabolism ; Saccharomyces - virology ; Terminal Repeat Sequences</subject><ispartof>Nucleic Acids Research, 2021-03, Vol.49 (5), p.2878-2893</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</citedby><cites>FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</cites><orcidid>0000-0002-1045-2823 ; 0000-0002-2667-9926 ; 0000-0001-6234-2426 ; 0000-0002-6128-6343 ; 0000-0002-5723-6204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2492492636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,38516,43895,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2492492636?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33621339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrzejewska, Angelika</creatorcontrib><creatorcontrib>Zawadzka, Małgorzata</creatorcontrib><creatorcontrib>Gumna, Julita</creatorcontrib><creatorcontrib>Garfinkel, David J</creatorcontrib><creatorcontrib>Pachulska-Wieczorek, Katarzyna</creatorcontrib><title>In vivo structure of the Ty1 retrotransposon RNA genome</title><title>Nucleic Acids Research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.</description><subject>Base Pairing</subject><subject>Dimerization</subject><subject>Genome, Viral</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Biosynthesis</subject><subject>Retroelements</subject><subject>RNA and RNA-protein complexes</subject><subject>RNA, Transfer, Met - metabolism</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - metabolism</subject><subject>Saccharomyces - virology</subject><subject>Terminal Repeat Sequences</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>COVID</sourceid><recordid>eNp9kd1LwzAUxYMobk6ffJeCIILUJU2aNS_CGH4MREHmc0jTZOtsk5q0g_33ZmwO9UG4cB_uj8O55wBwjuAtggwPjXDD-YfIIYMHoI8wTWLCaHII-hDDNEaQZD1w4v0SQkRQSo5BDwcIYcz6YDQ10apc2ci3rpNt51RkddQuVDRbo8ip1tnWCeMb662J3l7G0VwZW6tTcKRF5dXZbg_A-8P9bPIUP78-Tifj51gSiNtYS5kRyjQqtKYiZcFLhosUFzgXSUaUUDkUGGW5FJgVNCc6yQRiUrIkp7lWeADutrpNl9eqkMoEOxVvXFkLt-ZWlPz3xZQLPrcrPmKUQQSDwPVOwNnPTvmW16WXqqqEUbbzPCEMh2BGIckBuPyDLm3nTHhvQ22GYhqomy0lnfXeKb03gyDfFMJDIXxXSKAvfvrfs98NBOBqC9iu-VfpCyOMlP0</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Andrzejewska, Angelika</creator><creator>Zawadzka, Małgorzata</creator><creator>Gumna, Julita</creator><creator>Garfinkel, David J</creator><creator>Pachulska-Wieczorek, Katarzyna</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1045-2823</orcidid><orcidid>https://orcid.org/0000-0002-2667-9926</orcidid><orcidid>https://orcid.org/0000-0001-6234-2426</orcidid><orcidid>https://orcid.org/0000-0002-6128-6343</orcidid><orcidid>https://orcid.org/0000-0002-5723-6204</orcidid></search><sort><creationdate>20210318</creationdate><title>In vivo structure of the Ty1 retrotransposon RNA genome</title><author>Andrzejewska, Angelika ; Zawadzka, Małgorzata ; Gumna, Julita ; Garfinkel, David J ; Pachulska-Wieczorek, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base Pairing</topic><topic>Dimerization</topic><topic>Genome, Viral</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Biosynthesis</topic><topic>Retroelements</topic><topic>RNA and RNA-protein complexes</topic><topic>RNA, Transfer, Met - metabolism</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - metabolism</topic><topic>Saccharomyces - virology</topic><topic>Terminal Repeat Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrzejewska, Angelika</creatorcontrib><creatorcontrib>Zawadzka, Małgorzata</creatorcontrib><creatorcontrib>Gumna, Julita</creatorcontrib><creatorcontrib>Garfinkel, David J</creatorcontrib><creatorcontrib>Pachulska-Wieczorek, Katarzyna</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic Acids Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrzejewska, Angelika</au><au>Zawadzka, Małgorzata</au><au>Gumna, Julita</au><au>Garfinkel, David J</au><au>Pachulska-Wieczorek, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo structure of the Ty1 retrotransposon RNA genome</atitle><jtitle>Nucleic Acids Research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>49</volume><issue>5</issue><spage>2878</spage><epage>2893</epage><pages>2878-2893</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33621339</pmid><doi>10.1093/nar/gkab090</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1045-2823</orcidid><orcidid>https://orcid.org/0000-0002-2667-9926</orcidid><orcidid>https://orcid.org/0000-0001-6234-2426</orcidid><orcidid>https://orcid.org/0000-0002-6128-6343</orcidid><orcidid>https://orcid.org/0000-0002-5723-6204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic Acids Research, 2021-03, Vol.49 (5), p.2878-2893
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969010
source Coronavirus Research Database
subjects Base Pairing
Dimerization
Genome, Viral
Nucleic Acid Conformation
Protein Biosynthesis
Retroelements
RNA and RNA-protein complexes
RNA, Transfer, Met - metabolism
RNA, Viral - chemistry
RNA, Viral - metabolism
Saccharomyces - virology
Terminal Repeat Sequences
title In vivo structure of the Ty1 retrotransposon RNA genome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20structure%20of%20the%20Ty1%20retrotransposon%20RNA%20genome&rft.jtitle=Nucleic%20Acids%20Research&rft.au=Andrzejewska,%20Angelika&rft.date=2021-03-18&rft.volume=49&rft.issue=5&rft.spage=2878&rft.epage=2893&rft.pages=2878-2893&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab090&rft_dat=%3Cproquest_COVID%3E2493001709%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-fcc8469f1dff6a5904883d53d3ba284eaeb0a318bca39d6b4f28a19cc92b6bfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492492636&rft_id=info:pmid/33621339&rft_oup_id=10.1093/nar/gkab090&rfr_iscdi=true